Nejvíce citovaný článek - PubMed ID 31371868
Chemical Tuning of Specific Capacitance in Functionalized Fluorographene
Single-atom catalysts (SACs) based on graphene derivatives are an emerging and growing class of materials functioning as two-dimensional (2D) metal-coordination scaffolds with intriguing properties. Recently, owing to the rich chemistry of fluorographene, new avenues have opened toward graphene derivatives with selective, spacer-free, and dense functionalization, acting as in-plane or out-of-plane metal coordination ligands. The particular structural features give rise to intriguing phenomena occurring between the coordinated metals and the graphene backbone. These include redox processes, charge transfer, emergence, and stabilization of rare or otherwise unstable metal valence states, as well as metal-support and metal-metal synergism. The vast potential of such systems has been demonstrated as enzyme mimics for cooperative mixed-valence SACs, ethanol fuel cells, and CO2 fixation; however, it is anticipated that their impact will further expand toward diverse fields, e.g., advanced organic transformations, electrochemical energy storage, and energy harvesting.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Eco-friendly, electrochemically active electrode materials based on covalent graphene derivatives offer enormous potential for energy storage applications. However, covalent grafting of functional groups onto the graphene surface is challenging due to its low reactivity. Here, fluorographene chemistry was employed to graft an arginine moiety via its guanidine group homogeneously on both sides of graphene. By tuning the reaction conditions and adding a non-toxic pore-forming agent, an optimum degree of functionalization and hierarchical porosity was achieved in the material. This tripled the specific surface area and yielded a high capacitance value of approximately 390 F g-1 at a current density of 0.25 A g-1 . The applicability of the electrode material was investigated under typical operating conditions by testing an assembled supercapacitor device for up to 30000 charging/discharging cycles, revealing capacitance retention of 82.3 %. This work enables the preparation of graphene derivatives with covalently grafted amino acids for technologically important applications, such as supercapacitor-based energy storage.
- Klíčová slova
- arginine, fluorographene, graphene, supercapacitor, ultracapacitor,
- Publikační typ
- časopisecké články MeSH
In this work, the covalent attachment of an amine functionalized metal-organic framework (UiO-66-NH2 = Zr6 O4 (OH)4 (bdc-NH2 )6 ; bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) (UiO-Universitetet i Oslo) to the basal-plane of carboxylate functionalized graphene (graphene acid = GA) via amide bonds is reported. The resultant GA@UiO-66-NH2 hybrid displayed a large specific surface area, hierarchical pores and an interconnected conductive network. The electrochemical characterizations demonstrated that the hybrid GA@UiO-66-NH2 acts as an effective charge storing material with a capacitance of up to 651 F g-1 , significantly higher than traditional graphene-based materials. The results suggest that the amide linkage plays a key role in the formation of a π-conjugated structure, which facilitates charge transfer and consequently offers good capacitance and cycling stability. Furthermore, to realize the practical feasibility, an asymmetric supercapacitor using a GA@UiO-66-NH2 positive electrode with Ti3 C2 TX MXene as the opposing electrode has been constructed. The cell is able to deliver a power density of up to 16 kW kg-1 and an energy density of up to 73 Wh kg-1 , which are comparable to several commercial devices such as Pb-acid and Ni/MH batteries. Under an intermediate level of loading, the device retained 88% of its initial capacitance after 10 000 cycles.
- Klíčová slova
- 2D materials, MXenes, asymmetric supercapacitors, covalent assemblies, metal-organic frameworks,
- Publikační typ
- časopisecké články MeSH
Supercapacitors offer a promising alternative to batteries, especially due to their excellent power density and fast charging rate capability. However, the cycling stability and material synthesis reproducibility need to be significantly improved to enhance the reliability and durability of supercapacitors in practical applications. Graphene acid (GA) is a conductive graphene derivative dispersible in water that can be prepared on a large scale from fluorographene. Here, we report a synthesis protocol with high reproducibility for preparing GA. The charging/discharging rate stability and cycling stability of GA were tested in a two-electrode cell with a sulfuric acid electrolyte. The rate stability test revealed that GA could be repeatedly measured at current densities ranging from 1 to 20 A g-1 without any capacitance loss. The cycling stability experiment showed that even after 60,000 cycles, the material kept 95.3% of its specific capacitance at a high current density of 3 A g-1. The findings suggested that covalent graphene derivatives are lightweight electrode materials suitable for developing supercapacitors with extremely high durability.
- Klíčová slova
- cycling stability, graphene acid, pseudocapacitance, supercapacitor,
- Publikační typ
- časopisecké články MeSH
A metal-organic gel (MOG) similar in constitution to MIL-100 (Fe) but containing a lower connectivity ligand (5-aminoisophthalate) was integrated with an isophthalate functionalized graphene (IG). The IG acted as a structure-directing templating agent, which also induced conductivity of the material. The MOG@IG was pyrolyzed at 600°C to obtain MGH-600, a hybrid of Fe/Fe3C/FeOx enveloped by graphene. MGH-600 shows a hierarchical pore structure, with micropores of 1.1 nm and a mesopore distribution between 2 and 6 nm, and Brunauer-Emmett-Teller surface area amounts to 216 m2/g. Furthermore, the MGH-600 composite displays magnetic properties, with bulk saturation magnetization value of 130 emu/g at room temperature. The material coated on glassy carbon electrode can distinguish between molecules with the same oxidation potential, such as dopamine in presence of ascorbic acid and revealed a satisfactory limit of detection and limit of quantification (4.39 × 10-7 and 1.33 × 10-6 M, respectively) for the neurotransmitter dopamine.
- Klíčová slova
- dopamine, gel, graphene, metal–organic gel, nanocomposite, sensing,
- Publikační typ
- časopisecké články MeSH