Most cited article - PubMed ID 31372177
Quantification of karrikins in smoke water using ultra-high performance liquid chromatography-tandem mass spectrometry
BACKGROUND: Karrikins (KARs) are recently described group of plant growth regulators with stimulatory effects on seed germination, seedling growth and crop productivity. So far, an analytical method for the simultaneous targeted profiling of KARs in plant tissues has not been reported. RESULTS: We present a sensitive method for the determination of two highly biologically active karrikins (KAR1 and KAR2) in minute amounts of plant material (< 20 mg fresh weight). The developed protocol combines the optimized extraction and efficient single-step sample purification with ultra-high performance liquid chromatography-tandem mass spectrometry. Newly synthesized deuterium labelled KAR1 was employed as an internal standard for the validation of KAR quantification using a stable isotope dilution method. The application of the matrix-matched calibration series in combination with the internal standard method yields a high level of accuracy and precision in triplicate, on average bias 3.3% and 2.9% RSD, respectively. The applicability of this analytical approach was confirmed by the successful analysis of karrikins in Arabidopsis seedlings grown on media supplemented with different concentrations of KAR1 and KAR2 (0.1, 1.0 and 10.0 µmol/l). CONCLUSIONS: Our results demonstrate the usage of methodology for routine analyses and for monitoring KARs in complex biological matrices. The proposed method will lead to better understanding of the roles of KARs in plant growth and development.
Karrikins (KARs) have been identified as molecules derived from plant material smoke, which have the capacity to enhance seed germination for a wide range of plant species. However, KARs were observed to not only impact seed germination but also observed to influence several biological processes. The plants defected in the KARs signaling pathway were observed to grow differently with several morphological changes. The observation of KARs as a growth regulator in plants leads to the search for an endogenous KAR-like molecule. Due to its simple genomic structure, Arabidopsis (Arabidopsis thaliana L.) helps to understand the signaling mechanism of KARs and phenotypic responses caused by them. However, different species have a different phenotypic response to KARs treatment. Therefore, in the current work, updated information about the KARs effect is presented. Results of research on agricultural and horticultural crops are summarized and compared with the findings of Arabidopsis studies. In this article, we suggested that KARs may be more important in coping with modern problems than one could imagine.
- Keywords
- Arabidopsis, crops, karrikins, seed germination,
- Publication type
- Journal Article MeSH
- Review MeSH
Eucomis autumnalis (Mill.) Chitt. subspecies autumnalis is a popular African plant that is susceptible to population decline because the bulbs are widely utilized for diverse medicinal purposes. As a result, approaches to ensure the sustainability of the plants are essential. In the current study, the influence of smoke-water (SW) and karrikinolide (KAR1 isolated from SW extract) on the phytochemicals and antioxidant activity of in vitro and greenhouse-acclimatized Eucomis autumnalis subspecies autumnalis were evaluated. Leaf explants were cultured on Murashige and Skoog (MS) media supplemented with SW (1:500, 1:1000 and 1:1500 v/v dilutions) or KAR1 (10-7, 10-8 and 10-9 M) and grown for ten weeks. In vitro regenerants were subsequently acclimatized in the greenhouse for four months. Bioactive phytochemicals in different treatments were analyzed using ultra-high performance liquid chromatography (UHPLC-MS/MS), while antioxidant potential was evaluated using two chemical tests namely: DPPH and the β-carotene model. Smoke-water and KAR1 generally influenced the quantity and types of phytochemicals in in vitro regenerants and acclimatized plants. In addition to eucomic acid, 15 phenolic acids and flavonoids were quantified; however, some were specific to either the in vitro regenerants or greenhouse-acclimatized plants. The majority of the phenolic acids and flavonoids were generally higher in in vitro regenerants than in acclimatized plants. Evidence from the chemical tests indicated an increase in antioxidant activity of SW and KAR1-treated regenerants and acclimatized plants. Overall, these findings unravel the value of SW and KAR1 as potential elicitors for bioactive phytochemicals with therapeutic activity in plants facilitated via in vitro culture systems. In addition, it affords an efficient means to ensure the sustainability of the investigated plant. Nevertheless, further studies focusing on the use of other types of antioxidant test systems (including in vivo model) and the carry-over effect of the application of SW and KAR1 for a longer duration will be pertinent. In addition, the safety of the resultant plant extracts and their pharmacological efficacy in clinical relevance systems is required.
- Keywords
- asparagaceae, conservation, eucomic acid, flavonoids, hydroxybenzoic acids, hydroxycinnamic acids, micropropagation, phenolic acids,
- Publication type
- Journal Article MeSH