Most cited article - PubMed ID 31388101
Exploiting Graphoelements and Convolutional Neural Networks with Long Short Term Memory for Classification of the Human Electroencephalogram
Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.
Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients.
- Keywords
- electrophysiology, epilepsy, machine learning, seizures,
- Publication type
- Journal Article MeSH
BACKGROUND: While the effects of prolonged sleep deprivation (≥24 h) on seizure occurrence has been thoroughly explored, little is known about the effects of day-to-day variations in the duration and quality of sleep on seizure probability. A better understanding of the interaction between sleep and seizures may help to improve seizure management. METHODS: To explore how sleep and epileptic seizures are associated, we analysed continuous intracranial electroencephalography (EEG) recordings collected from 10 patients with refractory focal epilepsy undergoing ordinary life activities between 2010 and 2012 from three clinical centres (Austin Health, The Royal Melbourne Hospital, and St Vincent's Hospital of the Melbourne University Epilepsy Group). A total of 4340 days of sleep-wake data were analysed (average 434 days per patient). EEG data were sleep scored using a semi-automated machine learning approach into wake, stages one, two, and three non-rapid eye movement sleep, and rapid eye movement sleep categories. FINDINGS: Seizure probability changes with day-to-day variations in sleep duration. Logistic regression models revealed that an increase in sleep duration, by 1·66 ± 0·52 h, lowered the odds of seizure by 27% in the following 48 h. Following a seizure, patients slept for longer durations and if a seizure occurred during sleep, then sleep quality was also reduced with increased time spent aroused from sleep and reduced rapid eye movement sleep. INTERPRETATION: Our results suggest that day-to-day deviations from regular sleep duration correlates with changes in seizure probability. Sleeping longer, by 1·66 ± 0·52 h, may offer protective effects for patients with refractory focal epilepsy, reducing seizure risk. Furthermore, the occurrence of a seizure may disrupt sleep patterns by elongating sleep and, if the seizure occurs during sleep, reducing its quality.
- Keywords
- Convulsions, EEG, Electroencephalography, Epilepsy, Long-term, Non-rapid eye movement, Rapid eye movement, Seizures, Sleep, Sleep architecture, Sleep composition, Sleep duration, Sleep quality,
- Publication type
- Journal Article MeSH
OBJECTIVE: Most seizure forecasting algorithms have relied on features specific to electroencephalographic recordings. Environmental and physiological factors, such as weather and sleep, have long been suspected to affect brain activity and seizure occurrence but have not been fully explored as prior information for seizure forecasts in a patient-specific analysis. The study aimed to quantify whether sleep, weather, and temporal factors (time of day, day of week, and lunar phase) can provide predictive prior probabilities that may be used to improve seizure forecasts. METHODS: This study performed post hoc analysis on data from eight patients with a total of 12.2 years of continuous intracranial electroencephalographic recordings (average = 1.5 years, range = 1.0-2.1 years), originally collected in a prospective trial. Patients also had sleep scoring and location-specific weather data. Histograms of future seizure likelihood were generated for each feature. The predictive utility of individual features was measured using a Bayesian approach to combine different features into an overall forecast of seizure likelihood. Performance of different feature combinations was compared using the area under the receiver operating curve. Performance evaluation was pseudoprospective. RESULTS: For the eight patients studied, seizures could be predicted above chance accuracy using sleep (five patients), weather (two patients), and temporal features (six patients). Forecasts using combined features performed significantly better than chance in six patients. For four of these patients, combined forecasts outperformed any individual feature. SIGNIFICANCE: Environmental and physiological data, including sleep, weather, and temporal features, provide significant predictive information on upcoming seizures. Although forecasts did not perform as well as algorithms that use invasive intracranial electroencephalography, the results were significantly above chance. Complementary signal features derived from an individual's historic seizure records may provide useful prior information to augment traditional seizure detection or forecasting algorithms. Importantly, many predictive features used in this study can be measured noninvasively.
- Keywords
- circadian, forecasting, seizure, sleep, weather,
- MeSH
- Bayes Theorem MeSH
- Time Factors * MeSH
- Adult MeSH
- Electrocorticography MeSH
- Epilepsy physiopathology MeSH
- Risk Assessment MeSH
- Middle Aged MeSH
- Humans MeSH
- Weather * MeSH
- Risk Factors MeSH
- Sleep * MeSH
- Seizures epidemiology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
EEG signal processing is a fundamental method for neurophysiology research and clinical neurology practice. Historically the classification of EEG into physiological, pathological, or artifacts has been performed by expert visual review of the recordings. However, the size of EEG data recordings is rapidly increasing with a trend for higher channel counts, greater sampling frequency, and longer recording duration and complete reliance on visual data review is not sustainable. In this study, we publicly share annotated intracranial EEG data clips from two institutions: Mayo Clinic, MN, USA and St. Anne's University Hospital Brno, Czech Republic. The dataset contains intracranial EEG that are labeled into three groups: physiological activity, pathological/epileptic activity, and artifactual signals. The dataset published here should support and facilitate training of generalized machine learning and digital signal processing methods for intracranial EEG and promote research reproducibility. Along with the data, we also propose a statistical method that is recommended for comparison of candidate classifier performance utilizing out-of-institution/out-of-patient testing.
- MeSH
- Artifacts * MeSH
- Electrocorticography * MeSH
- Epilepsy physiopathology MeSH
- Humans MeSH
- Brain * physiology physiopathology MeSH
- Signal Processing, Computer-Assisted MeSH
- Reproducibility of Results MeSH
- Machine Learning MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Dataset MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Geographicals
- Czech Republic MeSH
- Minnesota MeSH