Nejvíce citovaný článek - PubMed ID 31467189
Maleness-on-the-Y (MoY) orchestrates male sex determination in major agricultural fruit fly pests
BACKGROUND: The primary signals of sex determination in insects are diverse and evolve erratically. This also appears to be the case with moths and butterflies. In the silkworm Bombyx mori, female development is triggered by a W chromosome-derived Feminizer (Fem) piRNA that degrades the mRNA of the Z-linked Masculinizer (Masc) gene, which controls male development. We investigated whether this mechanism is conserved in another group of Lepidoptera. RESULTS: We identified a putative feminizing piRNA and many partial copies of the EkMasc gene on the W chromosome of Ephestia kuehniella. The piRNA is generated by a repetitive W-linked sequence named E. kuehniella Moth-overruler-of-masculinization (EkMom). EkMom piRNA shows high similarity to a region of Z-linked EkMasc and is expressed at the onset of female development, but has no relationship to the B. mori Fem piRNA. We then mapped small RNA-seq data from embryos of the related Plodia interpunctella to the PiMasc gene and identified a single small RNA, a PiMom piRNA, able to target PiMasc and with high sequence identity to the EkMom piRNA. Both the PiMom and EkMom repeats are present in high copy number and form a single cluster on the W chromosome. In both species, the Mom piRNA is responsible for Masc mRNA cleavage, clearly demonstrating that the Mom piRNA triggers female development. CONCLUSIONS: Our study provides multiple lines of evidence that Mom piRNA is the primary sex-determining signal in two pyralid moths and highlights a possible pathway for the origin of feminizing piRNAs in Lepidoptera. The similarity in female sex determination between the phylogenetically distant species suggests convergent evolution of feminizing piRNAs in Lepidoptera.
- Klíčová slova
- Ephestia kuehniella, Masculinizer, Plodia interpunctella, Feminizing piRNA, Lepidoptera, Sex chromosomes, Sex determination, Small RNA-seq,
- MeSH
- biologická evoluce * MeSH
- malá interferující RNA * genetika MeSH
- molekulární evoluce * MeSH
- můry * genetika MeSH
- Piwi-interagující RNA MeSH
- pohlavní chromozomy * genetika MeSH
- procesy určující pohlaví * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- malá interferující RNA * MeSH
- Piwi-interagující RNA MeSH
Nature has devised many ways of producing males and females. Here, we report on a previously undescribed mechanism for Lepidoptera that functions without a female-specific gene. The number of alleles or allele heterozygosity in a single Z-linked gene (BaMasc) is the primary sex-determining switch in Bicyclus anynana butterflies. Embryos carrying a single BaMasc allele develop into WZ (or Z0) females, those carrying two distinct alleles develop into ZZ males, while (ZZ) homozygotes initiate female development, have mismatched dosage compensation, and die as embryos. Consequently, selection against homozygotes has favored the evolution of spectacular allelic diversity: 205 different coding sequences of BaMasc were detected in a sample of 246 females. The structural similarity of a hypervariable region (HVR) in BaMasc to the HVR in Apis mellifera csd suggests molecular convergence between deeply diverged insect lineages. Our discovery of this primary switch highlights the fascinating diversity of sex-determining mechanisms and underlying evolutionary drivers.
- MeSH
- alely MeSH
- hmyzí proteiny genetika metabolismus MeSH
- homozygot MeSH
- motýli * genetika MeSH
- procesy určující pohlaví * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
Genetic sexing strains (GSS), such as the Ceratitis capitata (medfly) VIENNA 8 strain, facilitate male-only releases and improve the efficiency and cost-effectiveness of sterile insect technique (SIT) applications. Laboratory domestication may reduce their genetic diversity and mating behaviour and hence, refreshment with wild genetic material is frequently needed. As wild males do not carry the T(Y;A) translocation, and wild females do not easily conform to artificial oviposition, the genetic refreshment of this GSS is a challenging and time-consuming process. In the present study, we report the development of a novel medfly GSS, which is based on a viable homozygous T(XX;AA) translocation using the same selectable markers, the white pupae and temperature-sensitive lethal genes. This allows the en masse cross of T(XX;AA) females with wild males, and the backcrossing of F1 males with the T(XX;AA) females thus facilitating the re-establishment of the GSS as well as its genetic refreshment. The rearing efficiency and mating competitiveness of the novel GSS are similar to those of the T(Y;A)-based VIENNA 8 GSS. However, its advantage to easily allow the genetic refreshment is of great importance as it can ensure the mass production of high-quality males and enhanced efficacy of operational SIT programs.
- MeSH
- biologická kontrola škůdců metody MeSH
- Ceratitis capitata * genetika MeSH
- lidé MeSH
- mužská infertilita * genetika MeSH
- rozmnožování genetika MeSH
- translokace genetická MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sexual vs. asexual reproduction-unisexual vs. bisexual populations-diploid vs. polyploid biotypes-genetic vs. environmental sex determination: all these natural phenomena are associated with the genus of teleost fish, Carassius. This review places emphasis on two Carassius entities with completely different biological characteristics: one globally widespread and invasive Carassius gibelio, and the other C. carassius with a decreasing trend of natural occurrence. Comprehensive biological and cytogenetic knowledge of both entities, including the physical interactions between them, can help to balance the advantages of highly invasive and disadvantages of threatened species. For example, the benefits of a wide-ranged colonization can lead to the extinction of native species or be compensated by parasitic enemies and lead to equilibrium. This review emphasizes the comprehensive biology and cytogenetic knowledge and the importance of the Carassius genus as one of the most useful experimental vertebrate models for evolutionary biology and genetics. Secondly, the review points out that effective molecular cytogenetics should be used for the identification of various species, ploidy levels, and hybrids. The proposed investigation of these hallmark characteristics in Carassius may be applied in conservation efforts to sustain threatened populations in their native ranges. Furthermore, the review focuses on the consequences of the co-occurrence of native and non-native species and outlines future perspectives of Carassius research.
- Klíčová slova
- Carassius auratus complex, asexuality, biotype, hybridization, ploidy level, sex determination, sexuality, species,
- MeSH
- Cyprinidae * MeSH
- cytogenetické vyšetření MeSH
- cytogenetika MeSH
- diploidie MeSH
- ploidie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mass releases of sterilized male insects, in the frame of sterile insect technique programs, have helped suppress insect pest populations since the 1950s. In the major horticultural pests Bactrocera dorsalis, Ceratitis capitata, and Zeugodacus cucurbitae, a key phenotype white pupae (wp) has been used for decades to selectively remove females before releases, yet the gene responsible remained unknown. Here, we use classical and modern genetic approaches to identify and functionally characterize causal wp- mutations in these distantly related fruit fly species. We find that the wp phenotype is produced by parallel mutations in a single, conserved gene. CRISPR/Cas9-mediated knockout of the wp gene leads to the rapid generation of white pupae strains in C. capitata and B. tryoni. The conserved phenotype and independent nature of wp- mutations suggest this technique can provide a generic approach to produce sexing strains in other major medical and agricultural insect pests.
- MeSH
- biologická kontrola škůdců metody MeSH
- Ceratitis capitata genetika MeSH
- CRISPR-Cas systémy MeSH
- fenotyp MeSH
- fertilita genetika MeSH
- genom hmyzu genetika MeSH
- hmyzí proteiny genetika MeSH
- kukla genetika MeSH
- mutace * MeSH
- rozmnožování genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- Tephritidae klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- hmyzí proteiny MeSH