Nejvíce citovaný článek - PubMed ID 31743030
Charge Scaling Manifesto: A Way of Reconciling the Inherently Macroscopic and Microscopic Natures of Molecular Simulations
This study employs molecular dynamics (MD) simulations to investigate the adsorption and aggregation behavior of simple polyarginine cell-penetrating peptides (CPPs), specifically modeled as R9 peptides, at zwitterionic phosphocholine POPC membranes under varying ionic strengths of two peptide concentrations and two concentrations of NaCl and CaCl2. The results reveal an intriguing phenomenon of R9 aggregation at the membrane, which is dependent on the ionic strength, indicating a salting-out effect. As the peptide concentration and ionic strength increase, peptide aggregation also increases, with aggregate lifetimes and sizes showing a corresponding rise, accompanied by the total decrease of adsorbed peptides at the membrane surface. Notably, in high ionic strength environments, large R9 aggregates, such as octamers, are also observed occasionally. The salting-out, typically uncommon for short positively charged peptides, is attributed to the unique properties of arginine amino acid, specifically by its side chain containing amphiphilic guanidinium (Gdm+) ion which makes both intermolecular hydrophobic like-charge Gdm+ - Gdm+ and salt-bridge Gdm+ - C-terminus interactions, where the former are increased with the ionic strength, and the latter decreased due to electrostatic screening. The aggregation behavior of R9 peptides at membranes can also be linked to their CPP translocation properties, suggesting that aggregation may aid in translocation across cellular membranes.
- Klíčová slova
- Ionic strength, Molecular dynamics simulations, Peptide aggregation, Phosphocholine lipid bilayers, Polyarginines, Salting-out,
- Publikační typ
- časopisecké články MeSH
prosECCo75 is an optimized force field effectively incorporating electronic polarization via charge scaling. It aims to enhance the accuracy of nominally nonpolarizable molecular dynamics simulations for interactions in biologically relevant systems involving water, ions, proteins, lipids, and saccharides. Recognizing the inherent limitations of nonpolarizable force fields in precisely modeling electrostatic interactions essential for various biological processes, we mitigate these shortcomings by accounting for electronic polarizability in a physically rigorous mean-field way that does not add to computational costs. With this scaling of (both integer and partial) charges within the CHARMM36 framework, prosECCo75 addresses overbinding artifacts. This improves agreement with experimental ion binding data across a broad spectrum of systems─lipid membranes, proteins (including peptides and amino acids), and saccharides─without compromising their biomolecular structures. prosECCo75 thus emerges as a computationally efficient tool providing enhanced accuracy and broader applicability in simulating the complex interplay of interactions between ions and biomolecules, pivotal for improving our understanding of many biological processes.
Charge scaling has proven to be an efficient way to account in a mean-field manner for electronic polarization by aqueous ions in force field molecular dynamics simulations. However, commonly used water models with dielectric constants over 50 are not consistent with this approach leading to "overscaling", i.e., generally too weak ion-ion interactions. Here, we build water models fully compatible with charge scaling, i.e., having the correct low-frequency dielectric constant of about 45. To this end, we employ advanced optimization and machine learning schemes in order to explore the vast parameter space of four-site water models efficiently. As an a priori unwarranted positive result, we find a sizable range of force field parameters that satisfy the above dielectric constant constraint providing at the same time accuracy with respect to experimental data comparable with the best existing four-site water models such as TIP4P/2005, TIP4P-FB, or OPC. The present results thus open the way to the development of a consistent charge scaling force field for modeling ions in aqueous solutions.
- Publikační typ
- časopisecké články MeSH
The inclusion of electronic polarization is of crucial importance in molecular simulations of systems containing charged moieties. When neglected, as often done in force field simulations, charge-charge interactions in solution may become severely overestimated, leading to unrealistically strong bindings of ions to biomolecules. The electronic continuum correction introduces electronic polarization in a mean-field way via scaling of charges by the reciprocal of the square root of the high-frequency dielectric constant of the solvent environment. Here, we use ab initio molecular dynamics simulations to quantify the effect of electronic polarization on pairs of like-charged ions in a model nonaqueous environment where electronic polarization is the only dielectric response. Our findings confirm the conceptual validity of this approach, underlining its applicability to complex aqueous biomolecular systems. Simultaneously, the results presented here justify the potential employment of weaker charge scaling factors in force field development.
- Publikační typ
- časopisecké články MeSH
Adsorption of arginine-rich positively charged peptides onto neutral zwitterionic phosphocholine (PC) bilayers is a key step in the translocation of those potent cell-penetrating peptides into the cell interior. In the past, we have shown both theoretically and experimentally that polyarginines adsorb to the neutral PC-supported lipid bilayers in contrast to polylysines. However, comparing our results with previous studies showed that the results often do not match even at the qualitative level. The adsorption of arginine-rich peptides onto 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) may qualitatively depend on the actual experimental conditions where binding experiments have been performed. In this work, we systematically studied the adsorption of R9 and K9 peptides onto the POPC bilayer, aided by molecular dynamics (MD) simulations and fluorescence cross-correlation spectroscopy (FCCS) experiments. Using MD simulations, we tested a series of increasing peptide concentrations, in parallel with increasing Na+ and Ca2+ salt concentrations, showing that the apparent strength of adsorption of R9 decreases upon the increase of peptide or salt concentration in the system. The key result from the simulations is that the salt concentrations used experimentally can alter the picture of peptide adsorption qualitatively. Using FCCS experiments with fluorescently labeled R9 and K9, we first demonstrated that the binding of R9 to POPC is tighter by almost 2 orders of magnitude compared to that of K9. Finally, upon the addition of an excess of either Na+ or Ca2+ ions with R9, the total fluorescence correlation signal is lost, which implies the unbinding of R9 from the PC bilayer, in agreement with our predictions from MD simulations.
- MeSH
- adsorpce MeSH
- arginin MeSH
- fosfatidylcholiny chemie MeSH
- fosforylcholin MeSH
- lecitiny MeSH
- lipidové dvojvrstvy * chemie MeSH
- osmolární koncentrace MeSH
- penetrační peptidy * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arginin MeSH
- fosfatidylcholiny MeSH
- fosforylcholin MeSH
- lecitiny MeSH
- lipidové dvojvrstvy * MeSH
- penetrační peptidy * MeSH
Interactions at the solid-body fluid interfaces play a vital role in bone tissue formation at the implant surface. In this study, fully atomistic molecular dynamics (MD) simulations were performed to investigate interactions between the physiological components of body fluids (Ca2+, HPO42-, H2PO4-, Na+, Cl-, and H2O) and functionalized parylene C surface. In comparison to the native parylene C (-Cl surface groups), the introduction of -OH, -CHO, and -COOH surface groups significantly enhances the interactions between body fluid ions and the polymeric surface. The experimentally observed formation of calcium phosphate nanocrystals is discussed in terms of MD simulations of the calcium phosphate clustering. Surface functional groups promote the clustering of calcium and phosphate ions in the following order: -OH > -CHO > -Cl (parent parylene C) ≈ -COO-. This promoting role of surface functional groups is explained as stimulating the number of Ca2+ and HPO42- surface contacts as well as ion chemisorption. The molecular mechanism of calcium phosphate cluster formation at the functionalized parylene C surface is proposed.
- Klíčová slova
- calcium phosphate, functional groups, molecular dynamics, nucleation mechanism, parylene C, polymer surface,
- Publikační typ
- časopisecké články MeSH