Nejvíce citovaný článek - PubMed ID 31805370
Both selective and nonselective His bundle, but not myocardial, pacing preserve ventricular electrical synchrony assessed by ultra-high-frequency ECG
Conduction system pacing (CSP) is being increasingly adopted as a more physiological alternative to right ventricular and biventricular pacing. Since the 2021 European Society of Cardiology pacing guidelines, there has been growing evidence that this therapy is safe and effective. Furthermore, left bundle branch area pacing was not covered in these guidelines due to limited evidence at that time. This Clinical Consensus Statement provides advice on indications for CSP, taking into account the significant evolution in this domain.
- Klíčová slova
- Biventricular pacing, Cardiac resynchronization therapy, Conduction system pacing, His bundle pacing, Indications, Left bundle branch area pacing,
- MeSH
- akční potenciály MeSH
- kardiologie * normy MeSH
- kardiostimulace umělá * normy škodlivé účinky metody MeSH
- konsensus MeSH
- lidé MeSH
- převodní systém srdeční * patofyziologie MeSH
- společnosti lékařské MeSH
- srdeční arytmie * terapie patofyziologie diagnóza MeSH
- srdeční frekvence MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- směrnice pro lékařskou praxi MeSH
- Geografické názvy
- Evropa MeSH
From precordial ECG leads, the conventional determination of the negative derivative of the QRS complex (ND-ECG) assesses epicardial activation. Recently we showed that ultra-high-frequency electrocardiography (UHF-ECG) determines the activation of a larger volume of the ventricular wall. We aimed to combine these two methods to investigate the potential of volumetric and epicardial ventricular activation assessment and thereby determine the transmural activation sequence. We retrospectively analyzed 390 ECG records divided into three groups-healthy subjects with normal ECG, left bundle branch block (LBBB), and right bundle branch block (RBBB) patients. Then we created UHF-ECG and ND-ECG-derived depolarization maps and computed interventricular electrical dyssynchrony. Characteristic spatio-temporal differences were found between the volumetric UHF-ECG activation patterns and epicardial ND-ECG in the Normal, LBBB, and RBBB groups, despite the overall high correlations between both methods. Interventricular electrical dyssynchrony values assessed by the ND-ECG were consistently larger than values computed by the UHF-ECG method. Noninvasively obtained UHF-ECG and ND-ECG analyses describe different ventricular dyssynchrony and the general course of ventricular depolarization. Combining both methods based on standard 12-lead ECG electrode positions allows for a more detailed analysis of volumetric and epicardial ventricular electrical activation, including the assessment of the depolarization wave direction propagation in ventricles.
Identifying electrical dyssynchrony is crucial for cardiac pacing and cardiac resynchronization therapy (CRT). The ultra-high-frequency electrocardiography (UHF-ECG) technique allows instantaneous dyssynchrony analyses with real-time visualization. This review explores the physiological background of higher frequencies in ventricular conduction and the translational evolution of UHF-ECG in cardiac pacing and CRT. Although high-frequency components were studied half a century ago, their exploration in the dyssynchrony context is rare. UHF-ECG records ECG signals from eight precordial leads over multiple beats in time. After initial conceptual studies, the implementation of an instant visualization of ventricular activation led to clinical implementation with minimal patient burden. UHF-ECG aids patient selection in biventricular CRT and evaluates ventricular activation during various forms of conduction system pacing (CSP). UHF-ECG ventricular electrical dyssynchrony has been associated with clinical outcomes in a large retrospective CRT cohort and has been used to study the electrophysiological differences between CSP methods, including His bundle pacing, left bundle branch (area) pacing, left ventricular septal pacing and conventional biventricular pacing. UHF-ECG can potentially be used to determine a tailored resynchronization approach (CRT through biventricular pacing or CSP) based on the electrical substrate (true LBBB vs. non-specified intraventricular conduction delay with more distal left ventricular conduction disease), for the optimization of CRT and holds promise beyond CRT for the risk stratification of ventricular arrhythmias.
- Klíčová slova
- cardiac resynchronization therapy, conduction system pacing, electrical dyssynchrony, electrocardiography, ultra-high frequency,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Biventricular pacing (Biv) and left bundle branch area pacing (LBBAP) are methods of cardiac resynchronization therapy (CRT). Currently, little is known about how they differ in terms of ventricular activation. This study compared ventricular activation patterns in left bundle branch block (LBBB) heart failure patients using an ultra-high-frequency electrocardiography (UHF-ECG). This was a retrospective analysis including 80 CRT patients from two centres. UHF-ECG data were obtained during LBBB, LBBAP, and Biv. Left bundle branch area pacing patients were divided into non-selective left bundle branch pacing (NSLBBP) or left ventricular septal pacing (LVSP) and into groups with V6 R-wave peak times (V6RWPT) < 90 ms and ≥ 90 ms. Calculated parameters were: e-DYS (time difference between the first and last activation in V1-V8 leads) and Vdmean (average of V1-V8 local depolarization durations). In LBBB patients (n = 80) indicated for CRT, spontaneous rhythms were compared with Biv (39) and LBBAP rhythms (64). Although both Biv and LBBAP significantly reduced QRS duration (QRSd) compared with LBBB (from 172 to 148 and 152 ms, respectively, both P < 0.001), the difference between them was not significant (P = 0.2). Left bundle branch area pacing led to shorter e-DYS (24 ms) than Biv (33 ms; P = 0.008) and shorter Vdmean (53 vs. 59 ms; P = 0.003). No differences in QRSd, e-DYS, or Vdmean were found between NSLBBP, LVSP, and LBBAP with paced V6RWPTs < 90 and ≥ 90 ms. Both Biv CRT and LBBAP significantly reduce ventricular dyssynchrony in CRT patients with LBBB. Left bundle branch area pacing is associated with more physiological ventricular activation.
- Klíčová slova
- Biv CRT, Heart failure, LBBAP, UHF-ECG, Ventricular synchrony,
- Publikační typ
- časopisecké články MeSH
Conduction system pacing (CSP) has emerged as a more physiological alternative to right ventricular pacing and is also being used in selected cases for cardiac resynchronization therapy. His bundle pacing was first introduced over two decades ago and its use has risen over the last five years with the advent of tools which have facilitated implantation. Left bundle branch area pacing is more recent but its adoption is growing fast due to a wider target area and excellent electrical parameters. Nevertheless, as with any intervention, proper technique is a prerequisite for safe and effective delivery of therapy. This document aims to standardize the procedure and to provide a framework for physicians who wish to start CSP implantation, or who wish to improve their technique.
- Klíčová slova
- Conduction system pacing, Device implantation, His bundle pacing, Left bundle branch area pacing,
- MeSH
- Hisův svazek MeSH
- lidé MeSH
- nemoci převodního systému srdečního MeSH
- převodní systém srdeční * MeSH
- srdeční resynchronizační terapie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Kanada MeSH
- Latinská Amerika MeSH
Conduction system pacing (CSP) has emerged as a more physiological alternative to right ventricular pacing and is also being used in selected cases for cardiac resynchronization therapy. His bundle pacing was first introduced over two decades ago and its use has risen over the last years with the advent of tools which have facilitated implantation. Left bundle branch area pacing is more recent but its adoption is growing fast due to a wider target area and excellent electrical parameters. Nevertheless, as with any intervention, proper technique is a prerequisite for safe and effective delivery of therapy. This document aims to standardize the procedure and to provide a framework for physicians who wish to start CSP implantation, or who wish to improve their technique. A synopsis is provided in this print edition of EP-Europace. The full document may be consulted online, and a 'Key Messages' App can be downloaded from the EHRA website.
- Klíčová slova
- Conduction system pacing, Device implantation, His bundle pacing, Left bundle branch area pacing,
- MeSH
- lidé MeSH
- nemoci převodního systému srdečního MeSH
- převodní systém srdeční * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Asie MeSH
- Kanada MeSH
The majority of patients tolerate right ventricular pacing well; however, some patients manifest signs of heart failure after pacemaker implantation and develop pacing-induced cardiomyopathy. This is a consequence of non-physiological ventricular activation bypassing the conduction system. Ventricular dyssynchrony was identified as one of the main factors responsible for pacing-induced cardiomyopathy development. Currently, methods that would allow rapid and reliable ventricular dyssynchrony assessment, ideally during the implant procedure, are lacking. Paced QRS duration is an imperfect marker of dyssynchrony, and methods based on body surface mapping, electrocardiographic imaging or echocardiography are laborious and time-consuming, and can be difficult to use during the implantation procedure. However, the ventricular activation sequence can be readily displayed from the chest leads using an ultra-high-frequency ECG. It can be performed during the implantation procedure to visualise ventricular depolarisation and resultant ventricular dyssynchrony during pacing. This information can assist the electrophysiologist in selecting a pacing location that avoids dyssynchronous ventricular activation.
- Klíčová slova
- Pacing-induced cardiomyopathy, cardiac pacing, ultra-high-frequency ECG, ventricular dyssynchrony assessment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The study introduces and validates a novel high-frequency (100-400 Hz bandwidth, 2 kHz sampling frequency) electrocardiographic imaging (HFECGI) technique that measures intramural ventricular electrical activation. Ex-vivo experiments and clinical measurements were employed. Ex-vivo, two pig hearts were suspended in a human-torso shaped tank using surface tank electrodes, epicardial electrode sock, and plunge electrodes. We compared conventional epicardial electrocardiographic imaging (ECGI) with intramural activation by HFECGI and verified with sock and plunge electrodes. Clinical importance of HFECGI measurements was performed on 14 patients with variable conduction abnormalities. From 3 × 4 needle and 108 sock electrodes, 256 torso or 184 body surface electrodes records, transmural activation times, sock epicardial activation times, ECGI-derived activation times, and high-frequency activation times were computed. The ex-vivo transmural measurements showed that HFECGI measures intramural electrical activation, and ECGI-HFECGI activation times differences indicate endo-to-epi or epi-to-endo conduction direction. HFECGI-derived volumetric dyssynchrony was significantly lower than epicardial ECGI dyssynchrony. HFECGI dyssynchrony was able to distinguish between intraventricular conduction disturbance and bundle branch block patients.
- MeSH
- diagnostické zobrazování * MeSH
- elektrokardiografie * MeSH
- lidé MeSH
- prasata MeSH
- převodní systém srdeční * diagnostické zobrazování patofyziologie MeSH
- srdeční komory * diagnostické zobrazování patofyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH