Nejvíce citovaný článek - PubMed ID 31878115
The Influence of Quadruplex Structure in Proximity to P53 Target Sequences on the Transactivation Potential of P53 Alpha Isoforms
Clarifying functions of the p53 protein is a crucial aspect of cancer research. We analyzed the binding sites of p53 wild-type (WT) protein and its oncologically significant mutants and evaluated their transactivation properties using a functional yeast assay. Unlike the binding sites as determined in myeloid leukemia cell lines by chromatin immunoprecipitation of p53-R175H, p53-Y220C, p53-M237I, p53-R248Q, and p53-R273H mutants, the target sites of p53-WT and p53-R282W were significantly associated with putative G-quadruplex sequences (PQSs). Guanine-quadruplex (G-quadruplex or G4) formation in these sequences was evaluated by using a set of biophysical methods. G4s can modulate gene expression induced by p53. At low p53 expression level, PQS upstream of the p53-response element (RE) leads to greater gene expression induced by p53-R282W compared to that for the RE without PQS. Meanwhile, p53-WT protein expression is decreased by the PQS presence. At a high p53 expression level, the presence of PQS leads to a decreased expression of the reporter regardless of the distance and localization of the G4 from the RE.
- Publikační typ
- časopisecké články MeSH
Non-canonical secondary structures in DNA are increasingly being revealed as critical players in DNA metabolism, including modulating the accessibility and activity of promoters. These structures comprise the so-called G-quadruplexes (G4s) that are formed from sequences rich in guanine bases. Using a well-defined transcriptional reporter system, we sought to systematically investigate the impact of the presence of G4 structures on transcription in yeast Saccharomyces cerevisiae. To this aim, different G4 prone sequences were modeled to vary the chance of intramolecular G4 formation, analyzed in vitro by Thioflavin T binding test and circular dichroism and then placed at the yeast ADE2 locus on chromosome XV, downstream and adjacent to a P53 response element (RE) and upstream from a minimal CYC1 promoter and Luciferase 1 (LUC1) reporter gene in isogenic strains. While the minimal CYC1 promoter provides basal reporter activity, the P53 RE enables LUC1 transactivation under the control of P53 family proteins expressed under the inducible GAL1 promoter. Thus, the impact of the different G4 prone sequences on both basal and P53 family protein-dependent expression was measured after shifting cells onto galactose containing medium. The results showed that the presence of G4 prone sequences upstream of a yeast minimal promoter increased its basal activity proportionally to their potential to form intramolecular G4 structures; consequently, this feature, when present near the target binding site of P53 family transcription factors, can be exploited to regulate the transcriptional activity of P53, P63 and P73 proteins.
- Klíčová slova
- G-quadruplex, p53, transcriptional activity, yeast,
- MeSH
- DNA metabolismus MeSH
- G-kvadruplexy * MeSH
- nádorový supresorový protein p53 genetika MeSH
- promotorové oblasti (genetika) MeSH
- Saccharomyces cerevisiae * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- nádorový supresorový protein p53 MeSH
P53, P63, and P73 proteins belong to the P53 family of transcription factors, sharing a common gene organization that, from the P1 and P2 promoters, produces two groups of mRNAs encoding proteins with different N-terminal regions; moreover, alternative splicing events at C-terminus further contribute to the generation of multiple isoforms. P53 family proteins can influence a plethora of cellular pathways mainly through the direct binding to specific DNA sequences known as response elements (REs), and the transactivation of the corresponding target genes. However, the transcriptional activation by P53 family members can be regulated at multiple levels, including the DNA topology at responsive promoters. Here, by using a yeast-based functional assay, we evaluated the influence that a G-quadruplex (G4) prone sequence adjacent to the p53 RE derived from the apoptotic PUMA target gene can exert on the transactivation potential of full-length and N-terminal truncated P53 family α isoforms (wild-type and mutant). Our results show that the presence of a G4 prone sequence upstream or downstream of the P53 RE leads to significant changes in the relative activity of P53 family proteins, emphasizing the potential role of structural DNA features as modifiers of P53 family functions at target promoter sites.
- Klíčová slova
- G-quadruplex (G4) prone sequence, P53 family, transactivation potential, wild-type and mutant P53/P63 proteins, yeast,
- MeSH
- apoptóza genetika MeSH
- DNA genetika ultrastruktura MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- membránové proteiny genetika ultrastruktura MeSH
- nádorový supresorový protein p53 genetika ultrastruktura MeSH
- promotorové oblasti (genetika) genetika MeSH
- protein p73 genetika ultrastruktura MeSH
- proteiny regulující apoptózu genetika MeSH
- protoonkogenní proteiny genetika MeSH
- responzivní elementy genetika MeSH
- Saccharomyces cerevisiae genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BBC3 protein, human MeSH Prohlížeč
- CKAP4 protein, human MeSH Prohlížeč
- DNA MeSH
- membránové proteiny MeSH
- nádorový supresorový protein p53 MeSH
- protein p73 MeSH
- proteiny regulující apoptózu MeSH
- protoonkogenní proteiny MeSH
- TP73 protein, human MeSH Prohlížeč
Nucleic acid-binding proteins are traditionally divided into two categories: With the ability to bind DNA or RNA. In the light of new knowledge, such categorizing should be overcome because a large proportion of proteins can bind both DNA and RNA. Another even more important features of nucleic acid-binding proteins are so-called sequence or structure specificities. Proteins able to bind nucleic acids in a sequence-specific manner usually contain one or more of the well-defined structural motifs (zinc-fingers, leucine zipper, helix-turn-helix, or helix-loop-helix). In contrast, many proteins do not recognize nucleic acid sequence but rather local DNA or RNA structures (G-quadruplexes, i-motifs, triplexes, cruciforms, left-handed DNA/RNA form, and others). Finally, there are also proteins recognizing both sequence and local structural properties of nucleic acids (e.g., famous tumor suppressor p53). In this mini-review, we aim to summarize current knowledge about the amino acid composition of various types of nucleic acid-binding proteins with a special focus on significant enrichment and/or depletion in each category.
- Klíčová slova
- DNA, G-quadruplex, RNA, Z-DNA, Z-RNA, amino acid composition, cruciform, i-motif, protein binding, triplex,
- MeSH
- DNA vazebné proteiny genetika MeSH
- DNA genetika ultrastruktura MeSH
- G-kvadruplexy MeSH
- konformace nukleové kyseliny * MeSH
- leucinové zipy genetika MeSH
- lidé MeSH
- nukleoproteiny genetika ultrastruktura MeSH
- RNA chemie ultrastruktura MeSH
- sekvence aminokyselin genetika MeSH
- transportní proteiny genetika ultrastruktura MeSH
- Z-DNA MeSH
- zinkové prsty genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA MeSH
- nukleoproteiny MeSH
- RNA MeSH
- transportní proteiny MeSH
- Z-DNA MeSH