Most cited article - PubMed ID 32584136
Increasing Veno-Arterial Extracorporeal Membrane Oxygenation Flow Reduces Electrical Impedance of the Lung Regions in Porcine Acute Heart Failure
The effects of a large arteriovenous fistula (AVF) on pulmonary perfusion remains to be elucidated. We aimed to study, for the first time, the real-time acute effects of a large AVF on regional distribution of pulmonary perfusion in a novel porcine model. Ten healthy swine under general anesthesia were studied. AVF was created by the connection of femoral artery and femoral vein using high-diameter perfusion cannulas. The AVF was closed and after 30 min of stabilization the first values were recorded. The fistula was then opened, and new data were collected after reaching stable state. Continuous hemodynamic monitoring was performed throughout the protocol. The following functional images were analyzed by electrical impedance tomography (EIT): perfusion and ventilation distributions. We found an increased cardiac output and right ventricular work, which was strongly correlated to an increased pulmonary artery mean pressure (r=0.878, P=0.001). The ventral/dorsal ratio of pulmonary perfusion decreased from 1.9+/-1.0 to 1.5+/-0.7 (P=0.025). The percentage of total pulmonary blood flow through the dorsal lung region increased from 38.6+/-11.7 to 42.2+/-10.4 (P=0.016). In conclusion, we have used EIT for the first time for studying the acute effects of a large AVF on regional distribution of pulmonary perfusion in a novel porcine model. In this new experimental model of hyperkinetic circulation caused by AVF, we documented an increased percentage of total pulmonary blood flow through the dorsal lung region and a more homogeneous perfusion distribution. Key words Arteriovenous fistula, Hyperkinetic circulation, Tissue perfusion, Animal model, Pulmonary blood flow.
- MeSH
- Pulmonary Artery physiopathology diagnostic imaging MeSH
- Arteriovenous Fistula * physiopathology diagnostic imaging MeSH
- Hemodynamics MeSH
- Disease Models, Animal MeSH
- Lung * blood supply diagnostic imaging MeSH
- Pulmonary Circulation * physiology MeSH
- Swine MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Background: Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is one of the most frequently used mechanical circulatory support devices. Distribution of extracorporeal membrane oxygenation flow depends (similarly as the cardiac output distribution) on regional vascular resistance. Arteriovenous fistulas (AVFs), used frequently as hemodialysis access, represent a low-resistant circuit which steals part of the systemic perfusion. We tested the hypothesis that the presence of a large Arteriovenous fistulas significantly changes organ perfusion during a partial and a full Veno-arterial extracorporeal membrane oxygenation support. Methods: The protocol was performed on domestic female pigs held under general anesthesia. Cannulas for Veno-arterial extracorporeal membrane oxygenation were inserted into femoral artery and vein. The Arteriovenous fistulas was created using another two high-diameter extracorporeal membrane oxygenation cannulas inserted in the contralateral femoral artery and vein. Catheters, flow probes, flow wires and other sensors were placed for continuous monitoring of haemodynamics and organ perfusion. A stepwise increase in extracorporeal membrane oxygenation flow was considered under beating heart and ventricular fibrillation (VF) with closed and opened Arteriovenous fistulas. Results: Opening of a large Arteriovenous fistulas (blood flow ranging from 1.1 to 2.2 L/min) resulted in decrease of effective systemic blood flow by 17%-30% (p < 0.01 for all steps). This led to a significant decrease of carotid artery flow (ranging from 13% to 25% after Arteriovenous fistulas opening) following VF and under partial extracorporeal membrane oxygenation support. Cerebral tissue oxygenation measured by near infrared spectroscopy also decreased significantly in all steps. These changes occurred even with maintained perfusion pressure. Changes in coronary artery flow were driven by changes in the native cardiac output. Conclusion: A large arteriovenous fistula can completely counteract Veno-arterial extracorporeal membrane oxygenation support unless maximal extracorporeal membrane oxygenation flow is applied. Cerebral blood flow and oxygenation are mainly compromised by the effect of the Arteriovenous fistulas. These effects could influence brain function in patients with Arteriovenous fistulas on Veno-arterial extracorporeal membrane oxygenation.
- Keywords
- animal model, arteriovenous fistula, cerebral blood flow, cerebral tissue oxygenation, veno-arterial extracorporeal membrane oxygenation,
- Publication type
- Journal Article MeSH
Low-volume lung injury encompasses local concentration of stresses in the vicinity of collapsed regions in heterogeneously ventilated lungs. We aimed to study the effects on ventilation and perfusion distributions of a sequential lateral positioning (30°) strategy using electrical impedance tomography imaging in a porcine experimental model of early acute respiratory distress syndrome (ARDS). We hypothesized that such strategy, including a real-time individualization of positive end-expiratory pressure (PEEP) whenever in lateral positioning, would provide attenuation of collapse in the dependent lung regions. A two-hit injury acute respiratory distress syndrome experimental model was established by lung lavages followed by injurious mechanical ventilation. Then, all animals were studied in five body positions in a sequential order, 15 min each: Supine 1; Lateral Left; Supine 2; Lateral Right; Supine 3. The following functional images were analyzed by electrical impedance tomography: ventilation distributions and regional lung volumes, and perfusion distributions. The induction of the acute respiratory distress syndrome model resulted in a marked fall in oxygenation along with low regional ventilation and compliance of the dorsal half of the lung (gravitational-dependent in supine position). Both the regional ventilation and compliance of the dorsal half of the lung greatly increased along of the sequential lateral positioning strategy, and maximally at its end. In addition, a corresponding improvement of oxygenation occurred. In conclusion, our sequential lateral positioning strategy, with sufficient positive end-expiratory pressure to prevent collapse of the dependent lung units during lateral positioning, provided a relevant diminution of collapse in the dorsal lung in a porcine experimental model of early acute respiratory distress syndrome.
- Keywords
- acute respiratory disease syndrome, body position changes, lung collapse, mechanical ventilation, ventilator-induced lung injury,
- Publication type
- Journal Article MeSH
Extracorporeal life support is a treatment modality that provides prolonged blood circulation, gas exchange and can substitute functions of heart and lungs to provide urgent cardio-respiratory stabilization in patients with severe but potentially reversible cardiopulmonary failure refractory to conventional therapy. Generally, the therapy targets blood pressure, volume status, and end-organs perfusion. As there are significant differences in hemodynamic efficacy among different percutaneous circulatory support systems, it should be carefully considered when selecting the most appropriate circulatory support for specific medical conditions in individual patients. Despite severe metabolic and hemodynamic deterioration during prolonged cardiac arrest, venoarterial extracorporeal membrane oxygenation (VA ECMO) can rapidly revert otherwise fatal prognosis, thus carrying a potential for improvement in survival rate, which can be even improved by introduction of mild therapeutic hypothermia. In order to allow a rapid transfer of knowledge to clinical medicine two porcine models were developed for studying efficiency of the VA ECMO in treatments of acute cardiogenic shock and progressive chronic heart failure. These models allowed also an intensive research of adverse events accompanying a clinical use of VA ECMO and their possible compensations. The results indicated that in order to weaken the negative effects of increased afterload on the left ventricular function the optimal VA ECMO flow in cardiogenic shock should be as low as possible to allow adequate tissue perfusion. The left ventricle can be also unloaded by an ECG-synchronized pulsatile flow if using a novel pulsatile ECMO system. Thus, pulsatility of VA ECMO flow may improve coronary perfusion even under conditions of high ECMO blood flows. And last but not least, also the percutaneous balloon atrial septostomy is a very perspective method how to passively decompress overloaded left heart.
Background: Arteriovenous fistulas (AVF) represent a low resistant circuit. It is known that their opening leads to decreased systemic vascular resistance, increased cardiac output and other hemodynamic changes. Possible competition of AVF and perfusion of other organs has been observed before, however the specific impact of AVF has not been elucidated yet. Previous animal models studied long-term changes associated with a surgically created high flow AVF. The aim of this study was to create a simple AVF model for the analysis of acute hemodynamic changes. Methods: Domestic female pigs weighing 62.6 ± 5.2 kg were used. All the experiments were held under general anesthesia. The AVF was created using high-diameter ECMO cannulas inserted into femoral artery and vein. Continuous hemodynamic monitoring was performed throughout the protocol. Near-infrared spectroscopy sensors, flow probes and flow wires were inserted to study brain and heart perfusion. Results: AVF blood flow was 2.1 ± 0.5 L/min, which represented around 23% of cardiac output. We observed increase in cardiac output (from 7.02 ± 2.35 L/min to 9.19 ± 2.99 L/min, p = 0.0001) driven dominantly by increased heart rate, increased pulmonary artery pressure, and associated right ventricular work. Coronary artery flow velocity rose. On the contrary, carotid artery flow and brain and muscle tissue oxygenation measured by NIRS decreased significantly. Conclusions: Our new non-surgical AVF model is reproducible and demonstrated an acute decrease of brain and muscle perfusion.
- Keywords
- animal model, arteriovenous fistula, cerebral oxygenation, coronary artery flow, hyperkinetic circulation, tissue perfusion,
- Publication type
- Journal Article MeSH
Extracorporeal life support (ECLS) is a treatment modality that provides prolonged blood circulation, gas exchange and can partially support or fully substitute functions of heart and lungs in patients with severe but potentially reversible cardiopulmonary failure refractory to conventional therapy. Due to high-volume bypass, the extracorporeal flow is interacting with native cardiac output. The pathophysiology of circulation and ECLS support reveals significant effects on arterial pressure waveforms, cardiac hemodynamics, and myocardial perfusion. Moreover, it is still subject of research, whether increasing stroke work caused by the extracorporeal flow is accompanied by adequate myocardial oxygen supply. The left ventricular (LV) pressure-volume mechanics are reflecting perfusion and loading conditions and these changes are dependent on the degree of the extracorporeal blood flow. By increasing the afterload, artificial circulation puts higher demands on heart work with increasing myocardial oxygen consumption. Further, this can lead to LV distention, pulmonary edema, and progression of heart failure. Multiple methods of LV decompression (atrial septostomy, active venting, intra-aortic balloon pump, pulsatility of flow) have been suggested to relieve LV overload but the main risk factors still remain unclear. In this context, it has been recommended to keep the rate of circulatory support as low as possible. Also, utilization of detailed hemodynamic monitoring has been suggested in order to avoid possible harm from excessive extracorporeal flow.