Nejvíce citovaný článek - PubMed ID 32778778
Lung cancer in never smokers (LCINS) accounts for around 25% of all lung cancers1,2 and has been associated with exposure to second-hand tobacco smoke and air pollution in observational studies3-5. Here we use data from the Sherlock-Lung study to evaluate mutagenic exposures in LCINS by examining the cancer genomes of 871 treatment-naive individuals with lung cancer who had never smoked, from 28 geographical locations. KRAS mutations were 3.8 times more common in adenocarcinomas of never smokers from North America and Europe than in those from East Asia, whereas a higher prevalence of EGFR and TP53 mutations was observed in adenocarcinomas of never smokers from East Asia. Signature SBS40a, with unknown cause6, contributed the largest proportion of single base substitutions in adenocarcinomas, and was enriched in cases with EGFR mutations. Signature SBS22a, which is associated with exposure to aristolochic acid7,8, was observed almost exclusively in patients from Taiwan. Exposure to secondhand smoke was not associated with individual driver mutations or mutational signatures. By contrast, patients from regions with high levels of air pollution were more likely to have TP53 mutations and shorter telomeres. They also exhibited an increase in most types of mutations, including a 3.9-fold increase in signature SBS4, which has previously been linked with tobacco smoking9, and a 76% increase in the clock-like10 signature SBS5. A positive dose-response effect was observed with air-pollution levels, correlating with both a decrease in telomere length and an increase in somatic mutations, mainly attributed to signatures SBS4 and SBS5. Our results elucidate the diversity of mutational processes shaping the genomic landscape of lung cancer in never smokers.
- MeSH
- adenokarcinom genetika MeSH
- erbB receptory genetika MeSH
- genom lidský * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace * genetika MeSH
- mutageneze * genetika MeSH
- nádorový supresorový protein p53 genetika MeSH
- nádory plic * genetika patologie MeSH
- nekuřáci * MeSH
- protoonkogenní proteiny p21(ras) genetika MeSH
- senioři MeSH
- znečištění ovzduší škodlivé účinky MeSH
- znečištění tabákovým kouřem škodlivé účinky MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- EGFR protein, human MeSH Prohlížeč
- erbB receptory MeSH
- KRAS protein, human MeSH Prohlížeč
- nádorový supresorový protein p53 MeSH
- protoonkogenní proteiny p21(ras) MeSH
- TP53 protein, human MeSH Prohlížeč
- znečištění tabákovým kouřem MeSH
Incidence rates of colorectal cancer vary geographically and have changed over time1. Notably, in the past two decades, the incidence of early-onset colorectal cancer, which affects individuals below 50 years of age, has doubled in many countries2-5. The reasons for this increase are unknown. Here we investigate whether mutational processes contribute to geographic and age-related differences by examining 981 colorectal cancer genomes from 11 countries. No major differences were found in microsatellite-unstable cancers, but variations in mutation burden and signatures were observed in the 802 microsatellite-stable cases. Multiple signatures, most with unknown aetiologies, exhibited varying prevalence in Argentina, Brazil, Colombia, Russia and Thailand, indicating geographically diverse levels of mutagenic exposure. Signatures SBS88 and ID18, caused by the bacteria-produced mutagen colibactin6,7, had higher mutation loads in countries with higher colorectal cancer incidence rates. SBS88 and ID18 were also enriched in early-onset colorectal cancers, being 3.3 times more common in individuals who were diagnosed before 40 years of age than in those over 70 years of age, and were imprinted early during colorectal cancer development. Colibactin exposure was further linked to APC driver mutations, with ID18 being responsible for about 25% of APC driver indels in colibactin-positive cases. This study reveals geographic and age-related variations in colorectal cancer mutational processes, and suggests that mutagenic exposure to colibactin-producing bacteria in early life may contribute to the increasing incidence of early-onset colorectal cancer.
- MeSH
- dospělí MeSH
- incidence MeSH
- kolorektální nádory * genetika epidemiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrosatelitní nestabilita MeSH
- mutace INDEL genetika MeSH
- mutace * genetika MeSH
- mutační rychlost MeSH
- mutageny metabolismus MeSH
- peptidy metabolismus MeSH
- polyketidy metabolismus MeSH
- senioři MeSH
- věk při počátku nemoci MeSH
- věkové faktory MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Argentina epidemiologie MeSH
- Brazílie epidemiologie MeSH
- Kolumbie epidemiologie MeSH
- Rusko epidemiologie MeSH
- Thajsko epidemiologie MeSH
- Názvy látek
- colibactin MeSH Prohlížeč
- mutageny MeSH
- peptidy MeSH
- polyketidy MeSH
Understanding lung cancer evolution can identify tools for intercepting its growth. In a landscape analysis of 1024 lung adenocarcinomas (LUAD) with deep whole-genome sequencing integrated with multiomic data, we identified 542 LUAD that displayed diverse clonal architecture. In this group, we observed an interplay between mobile elements, endogenous and exogenous mutational processes, distinct driver genes, and epidemiological features. Our results revealed divergent evolutionary trajectories based on tobacco smoking exposure, ancestry, and sex. LUAD from smokers showed an abundance of tobacco-related C:G>A:T driver mutations in KRAS plus short subclonal diversification. LUAD in never smokers showed early occurrence of copy number alterations and EGFR mutations associated with SBS5 and SBS40a mutational signatures. Tumors harboring EGFR mutations exhibited long latency, particularly in females of European-ancestry (EU_N). In EU_N, EGFR mutations preceded the occurrence of other driver genes, including TP53 and RBM10. Tumors from Asian never smokers showed a short clonal evolution and presented with heterogeneous repetitive patterns for the inferred mutational order. Importantly, we found that the mutational signature ID2 is a marker of a previously unrecognized mechanism for LUAD evolution. Tumors with ID2 showed short latency and high L1 retrotransposon activity linked to L1 promoter demethylation. These tumors exhibited an aggressive phenotype, characterized by increased genomic instability, elevated hypoxia scores, low burden of neoantigens, propensity to develop metastasis, and poor overall survival. Reactivated L1 retrotransposition-induced mutagenesis can contribute to the origin of the mutational signature ID2, including through the regulation of the transcriptional factor ZNF695, a member of the KZFP family. The complex nature of LUAD evolution creates both challenges and opportunities for screening and treatment plans.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Colorectal cancer incidence rates vary geographically and have changed over time. Notably, in the past two decades, the incidence of early-onset colorectal cancer, affecting individuals under the age of 50 years, has doubled in many countries. The reasons for this increase are unknown. Here, we investigate whether mutational processes contribute to geographic and age-related differences by examining 981 colorectal cancer genomes from 11 countries. No major differences were found in microsatellite unstable cancers, but variations in mutation burden and signatures were observed in the 802 microsatellite-stable cases. Multiple signatures, most with unknown etiologies, exhibited varying prevalence in Argentina, Brazil, Colombia, Russia, and Thailand, indicating geographically diverse levels of mutagenic exposure. Signatures SBS88 and ID18, caused by the bacteria-produced mutagen colibactin, had higher mutation loads in countries with higher colorectal cancer incidence rates. SBS88 and ID18 were also enriched in early-onset colorectal cancers, being 3.3 times more common in individuals diagnosed before age 40 than in those over 70, and were imprinted early during colorectal cancer development. Colibactin exposure was further linked to APC driver mutations, with ID18 responsible for about 25% of APC driver indels in colibactin-positive cases. This study reveals geographic and age-related variations in colorectal cancer mutational processes, and suggests that early-life mutagenic exposure to colibactin-producing bacteria may contribute to the rising incidence of early-onset colorectal cancer.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Smarca5, an ATPase of the ISWI class of chromatin remodelers, is a key regulator of chromatin structure, cell cycle and DNA repair. Smarca5 is deregulated in leukemia and breast, lung and gastric cancers. However, its role in oncogenesis is not well understood. Chromatin remodelers often play dosage-dependent roles in cancer. We therefore investigated the epigenomic and phenotypic impact of controlled stepwise attenuation of Smarca5 function in the context of primary cell transformation, a process relevant to tumor formation. Upon conditional single- or double-allele Smarca5 deletion, the cells underwent both accelerated growth arrest and senescence entry and displayed gradually increased sensitivity to genotoxic insults. These phenotypic characteristics were explained by specific remodeling of the chromatin structure and the transcriptome in primary cells prior to the immortalization onset. These molecular programs implicated Smarca5 requirement in DNA damage repair, telomere maintenance, cell cycle progression and in restricting apoptosis and cellular senescence. Consistent with the molecular programs, we demonstrate for the first time that Smarca5-deficient primary cells exhibit dramatically decreased capacity to bypass senescence and immortalize, an indispensable step during cell transformation and cancer development. Thus, Smarca5 plays a crucial role in key homeostatic processes and sustains cancer-promoting molecular programs and cellular phenotypes.
- Klíčová slova
- ATAC-seq, MEF, RNA-seq, Smarca5, Snf2h, cell cycle, cell immortalization, homologous recombination, non-homologous end-joining, senescence,
- MeSH
- adenosintrifosfatasy metabolismus MeSH
- chromatin * MeSH
- nádory * MeSH
- oprava DNA MeSH
- poškození DNA MeSH
- restrukturace chromatinu MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- chromatin * MeSH