Most cited article - PubMed ID 33072756
Dynamics of Tryptophan Metabolic Pathways in Human Placenta and Placental-Derived Cells: Effect of Gestation Age and Trophoblast Differentiation
Nucleos(t)ides are essential for DNA/RNA synthesis, energy metabolism, and signaling, yet their roles in placental development remain poorly understood. The placenta undergoes dynamic metabolic adaptations throughout gestation to support fetal growth. This study investigates gene expression shifts in nucleos(t)ide metabolism, transport, and adenosine signaling during placental development and in the pathological condition of spontaneous preterm birth (PTB). We analyzed gene expression in first-trimester (n = 10) and term (n = 10), and PTB (n = 10) human placentas, and in cytotrophoblast and syncytiotrophoblast stage in primary human trophoblasts (n = 3) and BeWo (n = 5) cells. For developmental context, rat placentas were examined at gestation days (GD) GD12, GD15, and GD20 (n = 5 per group) that correspond to early second trimester in the human placenta. We found that genes involved in nucleos(t)ide metabolism and adenosine signaling were dominantly upregulated from early gestation to term in the human placenta. PTB placentas revealed further elevation compared to the term placenta. Differentiation from cytotrophoblast to syncytiotrophoblast was accompanied by only minor changes. Pearson's correlation analysis revealed strong gene-metabolite and gene-gene associations, highlighting an integrated metabolic network regulating placental function. Gene expression also differed among the tested GDs in the rat placenta. These findings demonstrate dynamic changes of nucleos(t)ide metabolism during healthy placental development and enhanced expression in PTB placentas, suggesting increasing needs for nucleos(t)ides during placental growth and metabolic shifts in the PTB placenta. Our data also indicate that nucleos(t)ide metabolism is preserved in both proliferative and differentiated states.
Maternal immune activation during pregnancy is a risk factor for offspring neuropsychiatric disorders. Among the mechanistic pathways by which maternal inflammation can affect fetal brain development and programming, those involving tryptophan (TRP) metabolism have drawn attention because various TRP metabolites have neuroactive properties. This study evaluates the effect of bacterial (lipopolysaccharides/LPS) and viral (polyinosinic:polycytidylic acid/poly I:C) placental infection on TRP metabolism using an ex vivo model. Human placenta explants were exposed to LPS or poly I:C, and the release of TRP metabolites was analyzed together with the expression of related genes and proteins and the functional activity of key enzymes in TRP metabolism. The rate-limiting enzyme in the serotonin pathway, tryptophan hydroxylase, showed reduced expression and functional activity in explants exposed to LPS or poly I:C. Conversely, the rate-limiting enzyme in the kynurenine pathway, indoleamine dioxygenase, exhibited increased activity, gene, and protein expression, suggesting that placental infection mainly promotes TRP metabolism via the kynurenine (KYN) pathway. Furthermore, we observed that treatment with LPS or poly I:C increased activity in the kynurenine monooxygenase branch of the KYN pathway. We conclude that placental infection impairs TRP homeostasis, resulting in decreased production of serotonin and an imbalance in the ratio between quinolinic acid and kynurenic acid. This disrupted homeostasis may eventually expose the fetus to suboptimal/toxic levels of neuroactive molecules and impair fetal brain development.
- Keywords
- fetal brain development, intrauterine infections, placenta, programming, tryptophan metabolism,
- MeSH
- Indoleamine-Pyrrole 2,3,-Dioxygenase metabolism MeSH
- Kynurenine * metabolism MeSH
- Humans MeSH
- Lipopolysaccharides toxicity MeSH
- Placenta * metabolism MeSH
- Poly I metabolism MeSH
- Serotonin metabolism MeSH
- Pregnancy MeSH
- Tryptophan metabolism MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Indoleamine-Pyrrole 2,3,-Dioxygenase MeSH
- Kynurenine * MeSH
- Lipopolysaccharides MeSH
- Poly I MeSH
- Serotonin MeSH
- Tryptophan MeSH
Catecholamines norepinephrine and dopamine have been implicated in numerous physiological processes within the central nervous system. Emerging evidence has highlighted the importance of tightly regulated monoamine levels for placental functions and fetal development. However, the complexities of synthesis, release, and regulation of catecholamines in the fetoplacental unit have not been fully unraveled. In this study, we investigated the expression of enzymes and transporters involved in synthesis, degradation, and transport of norepinephrine and dopamine in the human placenta and rat fetoplacental unit. Quantitative PCR and Western blot analyses were performed in early-to-late gestation in humans (first trimester vs. term placenta) and mid-to-late gestation in rats (placenta and fetal brain, intestines, liver, lungs, and heart). In addition, we analyzed the gene expression patterns in isolated primary trophoblast cells from the human placenta and placenta-derived cell lines (HRP-1, BeWo, JEG-3). In both human and rat placentas, the study identifies the presence of only PNMT, COMT, and NET at the mRNA and protein levels, with the expression of PNMT and NET showing gestational age dependency. On the other hand, rat fetal tissues consistently express the catecholamine pathway genes, revealing distinct developmental expression patterns. Lastly, we report significant transcriptional profile variations in different placental cell models, emphasizing the importance of careful model selection for catecholamine metabolism/transport studies. Collectively, integrating findings from humans and rats enhances our understanding of the dynamic regulatory mechanisms that underlie catecholamine dynamics during pregnancy. We identified similar patterns in both species across gestation, suggesting conserved molecular mechanisms and potentially shedding light on shared biological processes influencing placental development.
- Keywords
- In vitro models, Metabolism, Monoamines, Placenta, Trophoblast,
- MeSH
- Dopamine * MeSH
- Catecholamines * MeSH
- Rats MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Norepinephrine MeSH
- Placenta MeSH
- Pregnancy MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Dopamine * MeSH
- Catecholamines * MeSH
- Norepinephrine MeSH
BACKGROUND: Serotonin (5-HT) is a biogenic monoamine with diverse functions in multiple human organs and tissues. During pregnancy, tightly regulated levels of 5-HT in the fetoplacental unit are critical for proper placental functions, fetal development, and programming. Despite being a non-neuronal organ, the placenta expresses a suite of homeostatic proteins, membrane transporters and metabolizing enzymes, to regulate monoamine levels. We hypothesized that placental 5-HT clearance is important for maintaining 5-HT levels in the fetoplacental unit. We therefore investigated placental 5-HT uptake from the umbilical circulation at physiological and supraphysiological levels as well as placental metabolism of 5-HT to 5-hydroxyindoleacetic acid (5-HIAA) and 5-HIAA efflux from trophoblast cells. METHODS: We employed a systematic approach using advanced organ-, tissue-, and cellular-level models of the human placenta to investigate the transport and metabolism of 5-HT in the fetoplacental unit. Human placentas from uncomplicated term pregnancies were used for perfusion studies, culturing explants, and isolating primary trophoblast cells. RESULTS: Using the dually perfused placenta, we observed a high and concentration-dependent placental extraction of 5-HT from the fetal circulation. Subsequently, within the placenta, 5-HT was metabolized to 5-hydroxyindoleacetic acid (5-HIAA), which was then unidirectionally excreted to the maternal circulation. In the explant cultures and primary trophoblast cells, we show concentration- and inhibitor-dependent 5-HT uptake and metabolism and subsequent 5-HIAA release into the media. Droplet digital PCR revealed that the dominant gene in all models was MAO-A, supporting the crucial role of 5-HT metabolism in placental 5-HT clearance. CONCLUSIONS: Taken together, we present transcriptional and functional evidence that the human placenta has an efficient 5-HT clearance system involving (1) removal of 5-HT from the fetal circulation by OCT3, (2) metabolism to 5-HIAA by MAO-A, and (3) selective 5-HIAA excretion to the maternal circulation via the MRP2 transporter. This synchronized mechanism is critical for regulating 5-HT in the fetoplacental unit; however, it can be compromised by external insults such as antidepressant drugs.
- Keywords
- Clearance, Fetal development, Homeostasis, Placenta, Serotonin,
- MeSH
- Amines MeSH
- Kinetics MeSH
- Hydroxyindoleacetic Acid MeSH
- Humans MeSH
- Placenta * MeSH
- Serotonin * MeSH
- Pregnancy MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amines MeSH
- Hydroxyindoleacetic Acid MeSH
- Serotonin * MeSH
BACKGROUND: Three primary monoamines-serotonin, norepinephrine, and dopamine-play major roles in the placenta-fetal brain axis. Analogously to the brain, the placenta has transport mechanisms that actively take up these monoamines into trophoblast cells. These transporters are known to play important roles in the differentiated syncytiotrophoblast layer, but their status and activities in the undifferentiated, progenitor cytotrophoblast cells are not well understood. Thus, we have explored the cellular handling and regulation of monoamine transporters during the phenotypic transitioning of cytotrophoblasts along the villous pathway. METHODS: Experiments were conducted with two cellular models of syncytium development: primary trophoblast cells isolated from the human term placenta (PHT), and the choriocarcinoma-derived BeWo cell line. The gene and protein expression of membrane transporters for serotonin (SERT), norepinephrine (NET), dopamine (DAT), and organic cation transporter 3 (OCT3) was determined by quantitative PCR and Western blot analysis, respectively. Subsequently, the effect of trophoblast differentiation on transporter activity was analyzed by monoamine uptake into cells. RESULTS: We present multiple lines of evidence of changes in the transcriptional and functional regulation of monoamine transporters associated with trophoblast differentiation. These include enhancement of SERT and DAT gene and protein expression in BeWo cells. On the other hand, in PHT cells we report negative modulation of SERT, NET, and OCT3 protein expression. We show that OCT3 is the dominant monoamine transporter in PHT cells, and its main functional impact is on serotonin uptake, while passive transport strongly contributes to norepinephrine and dopamine uptake. Further, we show that a wide range of selective serotonin reuptake inhibitors affect serotonin cellular accumulation, at pharmacologically relevant drug concentrations, via their action on both OCT3 and SERT. Finally, we demonstrate that BeWo cells do not well reflect the molecular mechanisms and properties of healthy human trophoblast cells. CONCLUSIONS: Collectively, our findings provide insights into the regulation of monoamine transport during trophoblast differentiation and present important considerations regarding appropriate in vitro models for studying monoamine regulation in the placenta.
- Keywords
- Cell differentiation, Membrane transport, Monoamines, Neuroplacentology, Placenta, Trophoblast,
- MeSH
- Dopamine metabolism MeSH
- Humans MeSH
- Norepinephrine pharmacology MeSH
- Placenta metabolism MeSH
- Serotonin * metabolism pharmacology MeSH
- Pregnancy MeSH
- Trophoblasts * metabolism MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Dopamine MeSH
- Norepinephrine MeSH
- Serotonin * MeSH
Spontaneous preterm birth is a serious medical condition responsible for substantial perinatal morbidity and mortality. Its phenotypic characteristics, preterm labor with intact membranes (PTL) and preterm premature rupture of the membranes (PPROM), are associated with significantly increased risks of neurological and behavioral alterations in childhood and later life. Recognizing the inflammatory milieu associated with PTL and PPROM, here, we examined expression signatures of placental tryptophan metabolism, an important pathway in prenatal brain development and immunotolerance. The study was performed in a well-characterized clinical cohort of healthy term pregnancies (n = 39) and 167 preterm deliveries (PTL, n = 38 and PPROM, n = 129). Within the preterm group, we then investigated potential mechanistic links between differential placental tryptophan pathway expression, preterm birth and both intra-amniotic markers (such as amniotic fluid interleukin-6) and maternal inflammatory markers (such as maternal serum C-reactive protein and white blood cell count). We show that preterm birth is associated with significant changes in placental tryptophan metabolism. Multifactorial analysis revealed similarities in expression patterns associated with multiple phenotypes of preterm delivery. Subsequent correlation computations and mediation analyses identified links between intra-amniotic and maternal inflammatory markers and placental serotonin and kynurenine pathways of tryptophan catabolism. Collectively, the findings suggest that a hostile inflammatory environment associated with preterm delivery underlies the mechanisms affecting placental endocrine/transport functions and may contribute to disruption of developmental programming of the fetal brain.
- MeSH
- Biomarkers MeSH
- Humans MeSH
- Metabolic Networks and Pathways MeSH
- Disease Susceptibility MeSH
- Placenta metabolism MeSH
- Premature Birth diagnosis etiology metabolism MeSH
- Gene Expression Regulation MeSH
- Risk Factors MeSH
- Gene Expression Profiling MeSH
- Pregnancy MeSH
- Transcriptome * MeSH
- Tryptophan metabolism MeSH
- Computational Biology methods MeSH
- Pregnancy Outcome MeSH
- Inflammation complications etiology MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Tryptophan MeSH
Depression is a prevalent condition affecting up to 20% of pregnant women. Hence, more than 10% are prescribed antidepressant drugs, mainly serotonin reuptake inhibitors (SSRIs) and selective serotonin and noradrenaline reuptake inhibitors (SNRIs). We hypothesize that antidepressants disturb serotonin homeostasis in the fetoplacental unit by inhibiting serotonin transporter (SERT) and organic cation transporter 3 (OCT3) in the maternal- and fetal-facing placental membranes, respectively. Paroxetine, citalopram, fluoxetine, fluvoxamine, sertraline, and venlafaxine were tested in situ (rat term placenta perfusion) and ex vivo (uptake studies in membrane vesicles isolated from healthy human term placenta). All tested antidepressants significantly inhibited SERT- and OCT3-mediated serotonin uptake in a dose-dependent manner. Calculated half-maximal inhibitory concentrations (IC50) were in the range of therapeutic plasma concentrations. Using in vitro and in situ models, we further showed that the placental efflux transporters did not compromise mother-to-fetus transport of antidepressants. Collectively, we suggest that antidepressants have the potential to affect serotonin levels in the placenta or fetus when administered at therapeutic doses. Interestingly, the effect of antidepressants on serotonin homeostasis in rat placenta was sex dependent. As accurate fetal programming requires optimal serotonin levels in the fetoplacental unit throughout gestation, inhibition of SERT-/OCT3-mediated serotonin uptake may help explain the poor outcomes of antidepressant use in pregnancy.
- Keywords
- antidepressants, fetal programming, placenta, pregnancy, serotonin, transport,
- Publication type
- Journal Article MeSH
Steroid hormones play a crucial role in supporting a successful pregnancy and ensuring proper fetal development. The placenta is one of the principal tissues in steroid production and metabolism, expressing a vast range of steroidogenic enzymes. Nevertheless, a comprehensive characterization of steroidogenic pathways in the human placenta and potential developmental changes occurring during gestation are poorly understood. Furthermore, the specific contribution of trophoblast cells in steroid release is largely unknown. Thus, this study aimed to (i) identify gestational age-dependent changes in the gene expression of key steroidogenic enzymes and (ii) explore the role of trophoblast cells in steroid biosynthesis and metabolism. Quantitative and Droplet Digital PCR analysis of 12 selected enzymes was carried out in the first trimester (n = 13) and term (n = 20) human placentas. Primary trophoblast cells (n = 5) isolated from human term placentas and choriocarcinoma-derived cell lines (BeWo, BeWo b30 clone, and JEG-3) were further screened for gene expression of enzymes involved in placental synthesis/metabolism of steroids. Finally, de novo steroid synthesis by primary human trophoblasts was evaluated, highlighting the functional activity of steroidogenic enzymes in these cells. Collectively, we provide insights into the expression patterns of steroidogenic enzymes as a function of gestational age and delineate the cellular origin of steroidogenesis in the human placenta.
- Keywords
- gestation, placenta, steroid metabolism, steroidogenesis, trophoblast,
- MeSH
- Choriocarcinoma metabolism pathology MeSH
- Adult MeSH
- Gestational Age MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Placenta cytology metabolism MeSH
- Pregnancy Trimester, First metabolism MeSH
- Gene Expression Regulation * MeSH
- Steroid Hydroxylases genetics metabolism MeSH
- Steroids metabolism MeSH
- Pregnancy MeSH
- Trophoblasts cytology metabolism MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Steroid Hydroxylases MeSH
- Steroids MeSH
Placental homeostasis of tryptophan is essential for fetal development and programming. The two main metabolic pathways (serotonin and kynurenine) produce bioactive metabolites with immunosuppressive, neurotoxic, or neuroprotective properties and their concentrations in the fetoplacental unit must be tightly regulated throughout gestation. Here, we investigated the expression/function of key enzymes/transporters involved in tryptophan pathways during mid-to-late gestation in rat placenta and fetal organs. Quantitative PCR and heatmap analysis revealed the differential expression of several genes involved in serotonin and kynurenine pathways. To identify the flux of substrates through these pathways, Droplet Digital PCR, western blot, and functional analyses were carried out for the rate-limiting enzymes and transporters. Our findings show that placental tryptophan metabolism to serotonin is crucial in mid-gestation, with a subsequent switch to fetal serotonin synthesis. Concurrently, at term, the close interplay between transporters and metabolizing enzymes of both placenta and fetal organs orchestrates serotonin homeostasis and prevents hyper/hypo-serotonemia. On the other hand, the placental production of kynurenine increases during pregnancy, with a low contribution of fetal organs throughout gestation. Any external insult to this tightly regulated harmony of transporters and enzymes within the fetoplacental unit may affect optimal in utero conditions and have a negative impact on fetal programming.
- Keywords
- fetal organs, fetal programming, placenta–brain axis, pregnancy, rat model, tryptophan metabolism,
- MeSH
- Rats MeSH
- Metabolic Networks and Pathways MeSH
- Placenta embryology metabolism MeSH
- Fetus embryology metabolism MeSH
- Rats, Wistar MeSH
- Pregnancy MeSH
- Transcriptome * MeSH
- Tryptophan genetics metabolism MeSH
- Gene Expression Regulation, Developmental MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Tryptophan MeSH