Nejvíce citovaný článek - PubMed ID 3309670
The minipig as a model in gnotobiology
Non-typhoidal Salmonella serovars are worldwide spread foodborne pathogens that cause diarrhea in humans and animals. Colonization of gnotobiotic piglet intestine with porcine indigenous mucinolytic Bifidobacterium boum RP36 strain and non-mucinolytic strain RP37 and their interference with Salmonella Typhimurium infection were compared. Bacterial interferences and impact on the host were evaluated by clinical signs of salmonellosis, bacterial translocation, goblet cell count, mRNA expression of mucin 2, villin, claudin-1, claudin-2, and occludin in the ileum and colon, and plasmatic levels of inflammatory cytokines IL-8, TNF-α, and IL-10. Both bifidobacterial strains colonized the intestine comparably. Neither RP36 nor RP37 B. boum strains effectively suppressed signs of salmonellosis. Both B. boum strains suppressed the growth of S. Typhimurium in the ileum and colon. The mucinolytic RP36 strain increased the translocation of S. Typhimurium into the blood, liver, and spleen.
- Klíčová slova
- Bifidobacterium boum, Salmonella Typhimurium, germ-free, gnotobiotic, goblet cells, mucin, mucinolytic, piglet,
- Publikační typ
- časopisecké články MeSH
Salmonella Typhimurium is a Gram-negative bacterium that causes enterocolitis in humans and pigs. Lipopolysaccharide (LPS) is a component of the outer leaflet of Gram-negative bacteria that provokes endotoxin shock. LPS can be synthesized completely or incompletely and creates S (smooth) or R (rough) chemotypes. Toll-like receptors (TLR) 2, 4, and 9 initiate an inflammatory reaction to combat bacterial infections. We associated/challenged one-week-old gnotobiotic piglets with wild-type S. Typhimurium with S chemotype or its isogenic ∆rfa mutants with R chemotype LPS. The wild-type S. Typhimurium induced TLR2 and TLR4 mRNA expression but not TLR9 mRNA expression in the ileum and colon of one-week-old gnotobiotic piglets 24 h after challenge. The TLR2 and TLR4 stimulatory effects of the S. Typhimurium ∆rfa mutants were related to the completeness of their LPS chain. The transcription of IL-12/23 p40, IFN-γ, and IL-6 in the intestine and the intestinal and plasmatic levels of IL-12/23 p40 and IL-6 but not IFN-γ were related to the activation of TLR2 and TLR4 signaling pathways. The avirulent S. Typhimurium ∆rfa mutants are potentially useful for modulation of the TLR2 and TLR4 signaling pathways to protect the immunocompromised gnotobiotic piglets against subsequent infection with the virulent S. Typhimurium.
- Klíčová slova
- Salmonella Typhimurium, chemotype, endotoxin, germ-free, gnotobiotic, lipopolysaccharide, piglet, toll-like receptor 4, ∆rfa mutant,
- MeSH
- gnotobiologické modely fyziologie MeSH
- ileum metabolismus mikrobiologie MeSH
- kolon metabolismus mikrobiologie MeSH
- miniaturní prasata MeSH
- mutace fyziologie MeSH
- prasata MeSH
- Salmonella typhimurium genetika izolace a purifikace MeSH
- salmonelóza genetika metabolismus patologie MeSH
- toll-like receptor 4 metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- toll-like receptor 4 MeSH
A balanced microbiota of the gastrointestinal tract (GIT) is a prerequisite for a healthy host. The GIT microbiota in preterm infants is determined by the method of delivery and nutrition. Probiotics can improve the GIT microbiota balance and suitable animal models are required to verify their harmlessness. Preterm gnotobiotic piglets were colonized with Lactobacillus rhamnosus GG (LGG) to evaluate its safety and possible protective action against infection with an enteric pathogen, Salmonella Typhimurium (ST). Clinical signs (anorexia, somnolence, fever and diarrhea), bacterial interference and translocation, intestinal histopathology, transcriptions of claudin-1, occludin and interferon (IFN)-γ, intestinal and systemic protein levels of interleukin (IL)-8, IL-12/23 p40 and IFN-γ were compared among (i) germ-free, (ii) LGG-colonized, (iii) ST-infected and (iv) LGG-colonized and subsequently ST-infected piglets for 24 h. Both LGG and ST-colonized the GIT; LGG translocated in some cases into mesenteric lymph nodes and the spleen but did not cause bacteremia and clinical changes. ST caused clinical signs of gastroenteritis, translocated into mesenteric lymph nodes, the spleen, liver and blood, increased claudin-1 and IFN-γ transcriptions, but decreased occludin transcription and increased local and systemic levels of IL-8 and IL-12/23 p40. Previous colonization with LGG reduced ST colonization in the jejunum and translocation into the liver, spleen and blood. It partially ameliorated histopathological changes in the intestine, reduced IL-8 levels in the jejunum and plasma and IL-12/23 p40 in the jejunum. The preterm gnotobiotic piglet model of the vulnerable preterm immunocompromised infant is useful to verify the safety of probiotics and evaluate their protective effect.
- Klíčová slova
- Lactobacillus rhamnosusGG, Salmonella Typhimurium, bacterial interference, gnotobiotic piglets, preterm,
- MeSH
- bakteriální translokace MeSH
- cytokiny analýza MeSH
- gnotobiologické modely MeSH
- Lacticaseibacillus rhamnosus * MeSH
- prasata MeSH
- předčasný porod mikrobiologie MeSH
- probiotika farmakologie MeSH
- proteiny těsného spoje genetika MeSH
- Salmonella typhimurium růst a vývoj MeSH
- střeva mikrobiologie patologie MeSH
- střevní mikroflóra MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- proteiny těsného spoje MeSH
OBJECTIVES: Alarmin high mobility group box 1 (HMGB1) is essential for correct DNA folding and transcription. It can be released from damaged cells or secreted by stimulated cells. HMGB1 has been detected in serum or plasma as a late marker of sepsis, but its suitability as a marker of sepsis has been disputed. METHODS: One-week-old germ-free piglets were orally infected/colonized with enteric bacterial pathogens (Salmonella Typhimurium or Escherichia coli O55) or with probiotic bacteria (E. coli Nissle 1917) for 24 h. The transcriptions of HMGB1, interleukin (IL)-8, tumor necrosis factor (TNF)-α, and IL-10 (quantitative reverse transcription and polymerase chain reaction), their protein levels (ELISA), and clinical state of the piglets (somnolence, anorexia, diarrhea, tachycardia, tachypnea, and tremor) were estimated. RESULTS: The piglets infected with enteric pathogens suffered from infections. HMGB1 was transcribed in the terminal ileum constitutively, regardless of any bacterial presence. In contrast, the transcription of cytokines was upregulated by virulent bacteria. HMGB1, IL-8, and TNF-α levels in the ileum were increased by both enteric pathogens, while IL-10 levels increased in E. coli O55-infected piglets only. HMGB1 significantly increased in the plasma of piglets infected with virulent E. coli only, but cytokine levels were in most cases increased by both virulent bacteria. HMGB1 and cytokine levels in ileum lavages and plasma of piglets colonized with probiotic E. coli remained comparable to those of the non-stimulated germ-free piglets. CONCLUSION: The local and systemic expression of HMGB1, its relationship to the inflammatory cytokines, and clinical findings showed HMGB1 as a suitable marker of severity of sepsis in the gnotobiotic piglet infection model.
- MeSH
- bakteriální infekce krev imunologie mikrobiologie MeSH
- biologické markery krev MeSH
- ELISA MeSH
- Escherichia coli růst a vývoj MeSH
- gnotobiologické modely * MeSH
- ileum metabolismus mikrobiologie MeSH
- interleukin-10 krev MeSH
- interleukin-8 krev MeSH
- modely nemocí na zvířatech MeSH
- novorozená zvířata krev imunologie mikrobiologie MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- prasata MeSH
- protein HMGB1 * krev MeSH
- průjem MeSH
- Salmonella typhimurium růst a vývoj MeSH
- sepse krev imunologie mikrobiologie MeSH
- stupeň závažnosti nemoci MeSH
- tachykardie MeSH
- TNF-alfa krev MeSH
- tremor MeSH
- zánět krev imunologie mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- interleukin-10 MeSH
- interleukin-8 MeSH
- protein HMGB1 * MeSH
- TNF-alfa MeSH
Metagenomic approaches are currently being used to decipher the genome of the microbiota (microbiome), and, in parallel, functional studies are being performed to analyze the effects of the microbiota on the host. Gnotobiological methods are an indispensable tool for studying the consequences of bacterial colonization. Animals used as models of human diseases can be maintained in sterile conditions (isolators used for germ-free rearing) and specifically colonized with defined microbes (including non-cultivable commensal bacteria). The effects of the germ-free state or the effects of colonization on disease initiation and maintenance can be observed in these models. Using this approach we demonstrated direct involvement of components of the microbiota in chronic intestinal inflammation and development of colonic neoplasia (i.e., using models of human inflammatory bowel disease and colorectal carcinoma). In contrast, a protective effect of microbiota colonization was demonstrated for the development of autoimmune diabetes in non-obese diabetic (NOD) mice. Interestingly, the development of atherosclerosis in germ-free apolipoprotein E (ApoE)-deficient mice fed by a standard low-cholesterol diet is accelerated compared with conventionally reared animals. Mucosal induction of tolerance to allergen Bet v1 was not influenced by the presence or absence of microbiota. Identification of components of the microbiota and elucidation of the molecular mechanisms of their action in inducing pathological changes or exerting beneficial, disease-protective activities could aid in our ability to influence the composition of the microbiota and to find bacterial strains and components (e.g., probiotics and prebiotics) whose administration may aid in disease prevention and treatment.
- MeSH
- autoimunitní nemoci etiologie mikrobiologie MeSH
- gastrointestinální trakt mikrobiologie MeSH
- gnotobiologické modely * MeSH
- imunita MeSH
- lidé MeSH
- metagenom imunologie MeSH
- modely nemocí na zvířatech MeSH
- nádory etiologie mikrobiologie MeSH
- sliznice imunologie MeSH
- zánět etiologie mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The colonization, translocation and protective effect of two intestinal bacteria - PR4 (pig commensal strain of Bifidobacterium choerinum) or EcN (probiotic Escherichia coli strain Nissle 1917) - against subsequent infection with a virulent LT2 strain of Salmonella enterica serovar Typhimurium were studied in gnotobiotic pigs after oral association. The clinical state of experimental animals correlated with bacterial translocation and levels of inflammatory cytokines [a chemokine, interleukin (IL)-8, a proinflammatory cytokine, tumour necrosis factor (TNF)-α and an anti-inflammatory cytokine, IL-10] in plasma and intestinal lavages. Gnotobiotic pigs orally mono-associated with either PR4 or EcN thrived, and bacteria were not found in their blood. No significant inflammatory cytokine response was observed. Mono-association with Salmonella caused devastating septicaemia characterized by high levels of IL-10 and TNF-α in plasma and TNF-α in the intestine. Di-associated gnotobiotic pigs were given PR4 or EcN for 24 h. Subsequently, they were infected orally with Salmonella and euthanized 24 h later. Pigs associated with bifidobacteria before Salmonella infection suffered from severe systemic infection and mounted similar cytokine responses as pigs infected with Salmonella alone. In contrast, EcN interfered with translocation of Salmonella into mesenteric lymph nodes and systemic circulation. Pigs pre-associated with EcN thrived and their clinical condition correlated with the absence of IL-10 in their plasma and a decrease of TNF-α in plasma and ileum.
- MeSH
- antibióza * MeSH
- Bifidobacterium imunologie MeSH
- cytokiny analýza krev MeSH
- Escherichia coli imunologie MeSH
- gnotobiologické modely MeSH
- ileum imunologie mikrobiologie MeSH
- kolon imunologie mikrobiologie MeSH
- prasata MeSH
- probiotika terapeutické užití MeSH
- Salmonella typhimurium imunologie MeSH
- salmonelová infekce u zvířat imunologie terapie MeSH
- střeva imunologie mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH