Nejvíce citovaný článek - PubMed ID 33259907
Chromosome genomics uncovers plant genome organization and function
The annual goatgrass, Aegilops biuncialis is a rich source of genes with considerable agronomic value. This genetic potential can be exploited for wheat improvement through interspecific hybridization to increase stress resistance, grain quality and adaptability. However, the low throughput of cytogenetic selection hampers the development of alien introgressions. Using the sequence of flow-sorted chromosomes of diploid progenitors, the present study enabled the development of chromosome-specific markers. In total, 482 PCR markers were validated on wheat (Mv9kr1) and Ae. biuncialis (MvGB642) crossing partners, and 126 on wheat-Aegilops additions. Thirty-two markers specific for U- or M-chromosomes were used in combination with GISH and FISH for the screening of 44 Mv9kr1 × Ae. biuncialis BC3F3 genotypes. The predominance of chromosomes 4M and 5M, as well as the presence of chromosomal aberrations, may indicate that these chromosomes have a gametocidal effect. A new wheat-Ae. biuncialis disomic 4U addition, 4M(4D) and 5M(5D) substitutions, as well as several introgression lines were selected. Spike morphology and fertility indicated that the Aegilops 4M or 5M compensated well for the loss of 4D and 5D, respectively. The new cytogenetic stocks represent valuable genetic resources for the introgression of key genes alleles into wheat.
Flow cytometry offers a unique way of analyzing and manipulating plant chromosomes. During a rapid movement in a liquid stream, large populations can be classified in a short time according to their fluorescence and light scatter properties. Chromosomes whose optical properties differ from other chromosomes in a karyotype can be purified by flow sorting and used in a range of applications in cytogenetics, molecular biology, genomics, and proteomics. As the samples for flow cytometry must be liquid suspensions of single particles, intact chromosomes must be released from mitotic cells. This protocol describes a procedure for preparation of suspensions of mitotic metaphase chromosomes from meristem root tips and their flow cytometric analysis and sorting for various downstream applications.
- Klíčová slova
- Accumulation of metaphase cells, Chromosome isolation, Cytogenetic stocks, FISH, FISHIS, Flow cytometry and sorting, Hydroponic, Mitotic synchrony, Plants, Seedlings,
- MeSH
- chromozomy rostlin * MeSH
- chromozomy * MeSH
- cytogenetika MeSH
- karyotypizace MeSH
- průtoková cytometrie metody MeSH
- suspenze MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- suspenze MeSH
Breeding of wheat adapted to new climatic conditions and resistant to diseases and pests is hindered by a limited gene pool due to domestication and thousands of years of human selection. Annual goatgrasses (Aegilops spp.) with M and U genomes are potential sources of the missing genes and alleles. Development of alien introgression lines of wheat may be facilitated by the knowledge of DNA sequences of Aegilops chromosomes. As the Aegilops genomes are complex, sequencing relevant Aegilops chromosomes purified by flow cytometric sorting offers an attractive route forward. The present study extends the potential of chromosome genomics to allotetraploid Ae. biuncialis and Ae. geniculata by dissecting their M and U genomes into individual chromosomes. Hybridization of FITC-conjugated GAA oligonucleotide probe to chromosomes suspensions of the two species allowed the application of bivariate flow karyotyping and sorting some individual chromosomes. Bivariate flow karyotype FITC vs. DAPI of Ae. biuncialis consisted of nine chromosome-populations, but their chromosome content determined by microscopic analysis of flow sorted chromosomes indicated that only 7Mb and 1Ub could be sorted at high purity. In the case of Ae. geniculata, fourteen chromosome-populations were discriminated, allowing the separation of nine individual chromosomes (1Mg, 3Mg, 5Mg, 6Mg, 7Mg, 1Ug, 3Ug, 6Ug, and 7Ug) out of the 14. To sort the remaining chromosomes, a partial set of wheat-Ae. biuncialis and a whole set of wheat-Ae. geniculata chromosome addition lines were also flow karyotyped, revealing clear separation of the GAA-rich Aegilops chromosomes from the GAA-poor A- and D-genome chromosomes of wheat. All of the alien chromosomes represented by individual addition lines could be isolated at purities ranging from 74.5% to 96.6% and from 87.8% to 97.7%, respectively. Differences in flow karyotypes between Ae. biuncialis and Ae. geniculata were analyzed and discussed. Chromosome-specific genomic resources will facilitate gene cloning and the development of molecular tools to support alien introgression breeding of wheat.
- Klíčová slova
- Aegilops biuncialis, Aegilops geniculata, chromosome flow sorting, flow karyotyping, genome dissecting,
- Publikační typ
- časopisecké články MeSH
Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.
- Klíčová slova
- Agropyron cristatum, Illumina sequencing, SSR-marker development, annotation, chromosome sorting, chromosome-specific sequences,
- MeSH
- Agropyron * genetika MeSH
- chromozomy rostlin genetika MeSH
- odolnost vůči nemocem genetika MeSH
- pšenice genetika MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
Proteins play a major role in the three-dimensional organization of nuclear genome and its function. While histones arrange DNA into a nucleosome fiber, other proteins contribute to higher-order chromatin structures in interphase nuclei, and mitotic/meiotic chromosomes. Despite the key role of proteins in maintaining genome integrity and transferring hereditary information to daughter cells and progenies, the knowledge about their function remains fragmentary. This is particularly true for the proteins of condensed chromosomes and, in particular, chromosomes of plants. Here, we purified barley mitotic metaphase chromosomes by a flow cytometric sorting and characterized their proteins. Peptides from tryptic protein digests were fractionated either on a cation exchanger or reversed-phase microgradient system before liquid chromatography coupled to tandem mass spectrometry. Chromosomal proteins comprising almost 900 identifications were classified based on a combination of software prediction, available database localization information, sequence homology, and domain representation. A biological context evaluation indicated the presence of several groups of abundant proteins including histones, topoisomerase 2, POLYMERASE 2, condensin subunits, and many proteins with chromatin-related functions. Proteins involved in processes related to DNA replication, transcription, and repair as well as nucleolar proteins were found. We have experimentally validated the presence of FIBRILLARIN 1, one of the nucleolar proteins, on metaphase chromosomes, suggesting that plant chromosomes are coated with proteins during mitosis, similar to those of human and animals. These results improve significantly the knowledge of plant chromosomal proteins and provide a basis for their functional characterization and comparative phylogenetic analyses.
- Klíčová slova
- FIBRILLARIN 1, barley, chromatin, flow cytometric sorting, mass spectrometry, mitotic chromosome, perichromosomal layer, protein prediction,
- Publikační typ
- časopisecké články MeSH
Flow cytometric analysis and sorting of plant mitotic chromosomes has been mastered by only a few laboratories worldwide. Yet, it has been contributing significantly to progress in plant genetics, including the production of genome assemblies and the cloning of important genes. The dissection of complex genomes by flow sorting into the individual chromosomes that represent small parts of the genome reduces DNA sample complexity and streamlines projects relying on molecular and genomic techniques. Whereas flow cytometric analysis, that is, chromosome classification according to fluorescence and light scatter properties, is an integral part of any chromosome sorting project, it has rarely been used on its own due to lower resolution and sensitivity as compared to other cytogenetic methods. To perform chromosome analysis and sorting, commercially available electrostatic droplet sorters are suitable. However, in order to resolve and purify chromosomes of interest the instrument must offer high resolution of optical signals as well as stability during long runs. The challenge is thus not the instrumentation, but the adequate sample preparation. The sample must be a suspension of intact mitotic metaphase chromosomes and the protocol, which includes the induction of cell cycle synchrony, accumulation of dividing cells at metaphase, and release of undamaged chromosomes, is time consuming and laborious and needs to be performed very carefully. Moreover, in addition to fluorescent staining chromosomal DNA, the protocol may include specific labelling of DNA repeats to facilitate discrimination of particular chromosomes. This review introduces the applications of chromosome sorting in plants, and discusses in detail sample preparation, chromosome analysis and sorting to achieve the highest purity in flow-sorted fractions, and their suitability for downstream applications.
- Klíčová slova
- DNA amplification, DNA isolation, cell cycle synchronization, gene mapping and cloning, genome sequencing, liquid chromosome suspension, marker development, mitotic metaphase chromosomes, repetitive DNA labelling,
- MeSH
- buněčný cyklus MeSH
- chromozomy rostlin * genetika MeSH
- metafáze MeSH
- průtoková cytometrie MeSH
- rostliny * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH