Nejvíce citovaný článek - PubMed ID 33801254
ANT1 Activation and Inhibition Patterns Support the Fatty Acid Cycling Mechanism for Proton Transport
BACKGROUND: Mitochondrial energy can be stored as ATP or released as heat by uncoupling protein 1 (UCP1) during non-shivering thermogenesis in brown adipose tissue. UCP1, located in the inner mitochondrial membrane, reduces the proton gradient in the presence of long-chain fatty acids (FA). FA act as weak, protein-independent uncouplers, with the transport of the FA anion across the membrane being the rate-limiting step. According to the fatty acid cycling hypothesis, UCP1 catalyzes this step through an as-yet-undefined mechanism. METHODS: We used computational and experimental techniques, including all-atom molecular dynamics (MD) simulations, membrane conductance measurements, and site-directed mutagenesis. RESULTS: We identified two novel pathways for fatty acid anion translocation (sliding) at the UCP1 protein-lipid interface, ending at key arginine residues R84 and R183 in a nucleotide-binding region. This region forms a stable complex with fatty acid anion, which is crucial for anion transport. Mutations of these two arginines reduced membrane conductance, consistent with the MD simulation prediction that the arachidonic acid anion slides between helices H2-H3 and H4-H5, terminating at R84 and R183. Protonation of the arachidonic acid anion predicts its release from the protein-lipid interface, allowing it to move to either cytosolic or matrix leaflets of the membrane. CONCLUSION: We provide a novel, detailed mechanism by which UCP1 facilitates fatty acid anion transport, as part of the fatty acid cycling process originally proposed by Skulachev. The residues involved in this transport are conserved in other SLC25 proteins, suggesting the mechanism may extend beyond UCP1 to other members of the superfamily.
- Klíčová slova
- anion transporter, cardiolipin, fatty acid cycling, mitochondrial SLC25 family, molecular dynamics simulations, proton transport mechanism,
- MeSH
- iontové kanály * metabolismus chemie genetika MeSH
- iontový transport fyziologie MeSH
- lidé MeSH
- mastné kyseliny * metabolismus MeSH
- mitochondriální proteiny * metabolismus chemie genetika MeSH
- mutageneze cílená MeSH
- simulace molekulární dynamiky * MeSH
- uncoupling protein 1 MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- iontové kanály * MeSH
- mastné kyseliny * MeSH
- mitochondriální proteiny * MeSH
- uncoupling protein 1 MeSH
The mitochondrial ADP/ATP carrier (AAC, ANT), a member of the SLC25 family of solute carriers, plays a critical role in transporting purine nucleotides (ATP and ADP) as well as protons across the inner mitochondrial membrane. However, the precise mechanism and physiological significance of proton transport by ADP/ATP carrier remain unclear. Notably, the presence of uncouplers-such as long-chain fatty acids (FA) or artificial compounds like dinitrophenol (DNP)-is essential for this process. We explore two potential mechanisms that describe ADP/ATP carrier as either (i) a proton carrier that functions in the presence of FA or DNP, or (ii) an anion transporter (FA- or DNP). In the latter case, the proton is translocated by the neutral form of FA, which carries it from the matrix to the intermembrane space (FA-cycling hypothesis). Our recent results support this hypothesis. We describe a four-step mechanism for the "sliding" of the FA anion from the matrix to the mitochondrial intermembrane space and discuss a possible generalization of this mechanism to other SLC25 carriers.
- Klíčová slova
- MD simulations, bilayer lipid membranes, membrane proteins, mitochondrial transporter, reconstituted protein, uncoupling protein,
- MeSH
- 2,4-dinitrofenol metabolismus MeSH
- adenosintrifosfát metabolismus MeSH
- biologický transport MeSH
- iontový transport MeSH
- lidé MeSH
- mastné kyseliny * metabolismus MeSH
- mitochondriální ADP/ATP-translokasy * metabolismus chemie MeSH
- mitochondrie * metabolismus MeSH
- protony * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- 2,4-dinitrofenol MeSH
- adenosintrifosfát MeSH
- mastné kyseliny * MeSH
- mitochondriální ADP/ATP-translokasy * MeSH
- protony * MeSH
Mitochondrial adenine nucleotide translocase (ANT) exchanges ADP for ATP to maintain energy production in the cell. Its protonophoric function in the presence of long-chain fatty acids (FA) is also recognized. Our previous results imply that proton/FA transport can be best described with the FA cycling model, in which protonated FA transports the proton to the mitochondrial matrix. The mechanism by which ANT1 transports FA anions back to the intermembrane space remains unclear. Using a combined approach involving measurements of the current through the planar lipid bilayers reconstituted with ANT1, site-directed mutagenesis and molecular dynamics simulations, we show that the FA anion is first attracted by positively charged arginines or lysines on the matrix side of ANT1 before moving along the positively charged protein-lipid interface and binding to R79, where it is protonated. We show that R79 is also critical for the competitive binding of ANT1 substrates (ADP and ATP) and inhibitors (carboxyatractyloside and bongkrekic acid). The binding sites are well conserved in mitochondrial SLC25 members, suggesting a general mechanism for transporting FA anions across the inner mitochondrial membrane.
- Klíčová slova
- AAC, ADP/ATP carrier, arachidonic acid, fatty acid cycling hypothesis, fatty acids anion transport, proton transport, uncoupling proteins,
- MeSH
- adenosintrifosfát metabolismus MeSH
- anionty metabolismus MeSH
- lipidové dvojvrstvy * MeSH
- mastné kyseliny metabolismus MeSH
- mitochondriální ADP/ATP-translokasy metabolismus MeSH
- protony * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- anionty MeSH
- lipidové dvojvrstvy * MeSH
- mastné kyseliny MeSH
- mitochondriální ADP/ATP-translokasy MeSH
- protony * MeSH
Oxidative stress and ROS are important players in the pathogenesis of numerous diseases. In addition to directly altering proteins, ROS also affects lipids with negative intrinsic curvature such as phosphatidylethanolamine (PE), producing PE adducts and lysolipids. The formation of PE adducts potentiates the protonophoric activity of mitochondrial uncoupling proteins, but the molecular mechanism remains unclear. Here, we linked the ROS-mediated change in lipid shape to the mechanical properties of the membrane and the function of uncoupling protein 1 (UCP1) and adenine nucleotide translocase 1 (ANT1). We show that the increase in the protonophoric activity of both proteins occurs due to the decrease in bending modulus in lipid bilayers in the presence of lysophosphatidylcholines (OPC and MPC) and PE adducts. Moreover, MD simulations showed that modified PEs and lysolipids change the lateral pressure profile of the membrane in the same direction and by the similar amplitude, indicating that modified PEs act as lipids with positive intrinsic curvature. Both results indicate that oxidative stress decreases stored curvature elastic stress (SCES) in the lipid bilayer membrane. We demonstrated that UCP1 and ANT1 sense SCES and proposed a novel regulatory mechanism for the function of these proteins. The new findings should draw the attention of the scientific community to this important and unexplored area of redox biochemistry.
2,4-Dinitrophenol (DNP) is a classic uncoupler of oxidative phosphorylation in mitochondria which is still used in "diet pills", despite its high toxicity and lack of antidotes. DNP increases the proton current through pure lipid membranes, similar to other chemical uncouplers. However, the molecular mechanism of its action in the mitochondria is far from being understood. The sensitivity of DNP's uncoupling action in mitochondria to carboxyatractyloside, a specific inhibitor of adenine nucleotide translocase (ANT), suggests the involvement of ANT and probably other mitochondrial proton-transporting proteins in the DNP's protonophoric activity. To test this hypothesis, we investigated the contribution of recombinant ANT1 and the uncoupling proteins UCP1-UCP3 to DNP-mediated proton leakage using the well-defined model of planar bilayer lipid membranes. All four proteins significantly enhanced the protonophoric effect of DNP. Notably, only long-chain free fatty acids were previously shown to be co-factors of UCPs and ANT1. Using site-directed mutagenesis and molecular dynamics simulations, we showed that arginine 79 of ANT1 is crucial for the DNP-mediated increase of membrane conductance, implying that this amino acid participates in DNP binding to ANT1.
- Klíčová slova
- artificial membranes, membrane potential, mitochondrial uncoupler, molecular dynamics simulations, proton conductance, protonophore,
- MeSH
- 2,4-dinitrofenol farmakologie MeSH
- jaterní mitochondrie metabolismus MeSH
- krysa rodu Rattus MeSH
- lipidové dvojvrstvy metabolismus MeSH
- membránové potenciály účinky léků MeSH
- mitochondriální ADP/ATP-translokasy metabolismus MeSH
- mitochondriální odpřahující proteiny metabolismus MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2,4-dinitrofenol MeSH
- lipidové dvojvrstvy MeSH
- mitochondriální ADP/ATP-translokasy MeSH
- mitochondriální odpřahující proteiny MeSH
Patatin-like phospholipase domain-containing protein PNPLA8, also termed Ca2+-independent phospholipase A2γ (iPLA2γ), is addressed to the mitochondrial matrix (or peroxisomes), where it may manifest its unique activity to cleave phospholipid side-chains from both sn-1 and sn-2 positions, consequently releasing either saturated or unsaturated fatty acids (FAs), including oxidized FAs. Moreover, iPLA2γ is directly stimulated by H2O2 and, hence, is activated by redox signaling or oxidative stress. This redox activation permits the antioxidant synergy with mitochondrial uncoupling proteins (UCPs) or other SLC25 mitochondrial carrier family members by FA-mediated protonophoretic activity, termed mild uncoupling, that leads to diminishing of mitochondrial superoxide formation. This mechanism allows for the maintenance of the steady-state redox status of the cell. Besides the antioxidant role, we review the relations of iPLA2γ to lipid peroxidation since iPLA2γ is alternatively activated by cardiolipin hydroperoxides and hypothetically by structural alterations of lipid bilayer due to lipid peroxidation. Other iPLA2γ roles include the remodeling of mitochondrial (or peroxisomal) membranes and the generation of specific lipid second messengers. Thus, for example, during FA β-oxidation in pancreatic β-cells, H2O2-activated iPLA2γ supplies the GPR40 metabotropic FA receptor to amplify FA-stimulated insulin secretion. Cytoprotective roles of iPLA2γ in the heart and brain are also discussed.