Nejvíce citovaný článek - PubMed ID 33839192
Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection
G-quadruplexes (G4) are stabilized by intra-quartet hydrogen bonds stacking between quartets, as well as specific and non-specific ionic interactions. Cation effects on G-quadruplexes differ significantly from those on duplexes, and specific cation coordination is indeed required to stabilize G4 structures. Most studies so far involve "standard" concentrations of potassium or sodium cations because of their prevalence in human cells, but several other monovalent and divalent cations may promote quadruplex formation. In addition, ionic strength may be different in other organisms such as Halophiles: the intracellular cation (potassium) concentration in salt-loving organisms such as Haloferax volcanii can be extremely high. In this study, we first performed a bioinformatics analysis of G4 propensity in halophiles and analyzed the impact of altering ionic strength or ionic balance on G4 or hairpin duplex stability. We then present a detailed and quantitative assessment of salt effect on a variety of duplex and quadruplex sequences. Over a dozen different quadruplex and duplex sequences were investigated by FRET melting and UV melting experiments. In addition, changes in sodium/potassium balance possibly occurring in human cells have a modest effect on G4-duplex competition. We also confirm that lithium is rather a "G4-indifferent" than a G4-destabilizing cation.
- Klíčová slova
- Cations, Duplex-quadruplex competition, G-quadruplex, Halophile, Ionic strength,
- Publikační typ
- časopisecké články MeSH
Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment. G-quadruplexes (G4) have emerged as potential therapeutic targets in antiviral therapy and have been identified in important regulatory regions of viral genomes. In this study, we examine the presence of potential G-quadruplex-forming sequences (PQS) across all currently available unique retroviral genomes. Given that these retroviral genomes typically consist of single-stranded RNA (ssRNA) molecules, we also investigated whether the localization of PQSs is strand-dependent. This is particularly relevant since antisense transcripts have been detected in HIV, and ERV integration into the host genome involves reverse transcription from genomic positive strand ssRNA to double-stranded DNA (dsDNA), implicating both strands in this process. We show that in most mammalian retroviruses, including human retroviruses, PQSs are significantly more prevalent on the negative (antisense) strand, with some notable exceptions such as HIV-1. In sharp contrast, avian retroviruses exhibit a higher prevalence of PQSs on the positive (sense) strand.
- Klíčová slova
- Bioinformatics, G-quadruplex, G4Hunter, Persistent infection, Retroviral genome,
- MeSH
- endogenní retroviry genetika MeSH
- G-kvadruplexy * MeSH
- genom virový * MeSH
- lidé MeSH
- Retroviridae * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hepatitis delta virus (HDV) is a highly unusual RNA satellite virus that depends on the presence of hepatitis B virus (HBV) to be infectious. Its compact and variable single-stranded RNA genome consists of eight major genotypes distributed unevenly across different continents. The significance of noncanonical secondary structures such as G-quadruplexes (G4s) is increasingly recognized at the DNA and RNA levels, particularly for transcription, replication, and translation. G4s are formed from guanine-rich sequences and have been identified in the vast majority of viral, eukaryotic, and prokaryotic genomes. In this study, we analyzed the G4 propensity of HDV genomes by using G4Hunter. Unlike HBV, which has a G4 density similar to that of the human genome, HDV displays a significantly higher number of potential quadruplex-forming sequences (PQS), with a density more than four times greater than that of the human genome. This finding suggests a critical role for G4s in HDV, especially given that the PQS regions are conserved across HDV genotypes. Furthermore, the prevalence of G4-forming sequences may represent a promising target for therapeutic interventions to control HDV replication.
- Publikační typ
- časopisecké články MeSH
Hepatitis B virus (HBV) is one of the most dangerous human pathogenic viruses found in all corners of the world. Recent sequencing of ancient HBV viruses revealed that these viruses have accompanied humanity for several millenia. As G-quadruplexes are considered to be potential therapeutic targets in virology, we examined G-quadruplex-forming sequences (PQS) in modern and ancient HBV genomes. Our analyses showed the presence of PQS in all 232 tested HBV genomes, with a total number of 1258 motifs and an average frequency of 1.69 PQS per kbp. Notably, the PQS with the highest G4Hunter score in the reference genome is the most highly conserved. Interestingly, the density of PQS motifs is lower in ancient HBV genomes than in their modern counterparts (1.5 and 1.9/kb, respectively). This modern frequency of 1.90 is very close to the PQS frequency of the human genome (1.93) using identical parameters. This indicates that the PQS content in HBV increased over time to become closer to the PQS frequency in the human genome. No statistically significant differences were found between PQS densities in HBV lineages found in different continents. These results, which constitute the first paleogenomics analysis of G4 propensity, are in agreement with our hypothesis that, for viruses causing chronic infections, their PQS frequencies tend to converge evolutionarily with those of their hosts, as a kind of 'genetic camouflage' to both hijack host cell transcriptional regulatory systems and to avoid recognition as foreign material.
- MeSH
- biologická evoluce MeSH
- G-kvadruplexy * MeSH
- genom lidský MeSH
- genomika MeSH
- lidé MeSH
- paleontologie MeSH
- virus hepatitidy B * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The secondary structure of nucleic acids containing quartets of guanines, termed G-quadruplexes, is known to regulate the transcription of many genes. Several G-quadruplexes can be formed in the HIV-1 long terminal repeat promoter region and their stabilization results in the inhibition of HIV-1 replication. Here, we identified helquat-based compounds as a new class of anti-HIV-1 inhibitors that inhibit HIV-1 replication at the stage of reverse transcription and provirus expression. Using Taq polymerase stop and FRET melting assays, we have demonstrated their ability to stabilize G-quadruplexes in the HIV-1 long-terminal repeat sequence. Moreover, these compounds were not binding to the general G-rich region, but rather to G-quadruplex-forming regions. Finally, docking and molecular dynamics calculations indicate that the structure of the helquat core greatly affects the binding mode to the individual G-quadruplexes. Our findings can provide useful information for the further rational design of inhibitors targeting G-quadruplexes in HIV-1.
The current monkeypox virus (MPXV) strain differs from the strain arising in 2018 by 50+ single nucleotide polymorphisms (SNPs) and is mutating much faster than expected. The cytidine deaminase apolipoprotein B messenger RNA editing enzyme, catalytic subunit B (APOBEC3) was hypothesized to be driving this increased mutation. APOBEC has recently been identified to preferentially mutate cruciform DNA secondary structures formed by inverted repeats (IRs). IRs were recently identified as hot spots for mutation in severe acute respiratory syndrome coronavirus 2, and we aimed to identify whether IRs were also hot spots for mutation within MPXV genomes. We found that MPXV genomes were replete with IR sequences. Of the 50+ SNPs identified in the 2022 outbreak strain, 63.9% of these were found to have arisen within IR regions in the 2018 reference strain (MT903344.1). Notably, IR sequences found in the 2018 reference strain were significantly lost over time, with an average of 32.5% of these sequences being conserved in the 2022 MPXV genomes. This evidence was highly indicative that mutations were arising within IRs. This data provides further support to the hypothesis that APOBEC may be driving MPXV mutation and highlights the necessity for greater surveillance of IRs of MPXV genomes to detect new mutations.
- Klíčová slova
- APOBEC, evolution, inverted repeats, monkeypox, mutation,
- MeSH
- COVID-19 * MeSH
- lidé MeSH
- mutace MeSH
- SARS-CoV-2 MeSH
- virus opičích neštovic * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
G-quadruplexes (G4s) have been long considered rare and physiologically unimportant in vitro curiosities, but recent methodological advances have proved their presence and functions in vivo. Moreover, in addition to their functional relevance in bacteria and animals, including humans, their importance has been recently demonstrated in evolutionarily distinct plant species. In this study, we analyzed the genome of Pisum sativum (garden pea, or the so-called green pea), a unique member of the Fabaceae family. Our results showed that this genome contained putative G4 sequences (PQSs). Interestingly, these PQSs were located nonrandomly in the nuclear genome. We also found PQSs in mitochondrial (mt) and chloroplast (cp) DNA, and we experimentally confirmed G4 formation for sequences found in these two organelles. The frequency of PQSs for nuclear DNA was 0.42 PQSs per thousand base pairs (kbp), in the same range as for cpDNA (0.53/kbp), but significantly lower than what was found for mitochondrial DNA (1.58/kbp). In the nuclear genome, PQSs were mainly associated with regulatory regions, including 5'UTRs, and upstream of the rRNA region. In contrast to genomic DNA, PQSs were located around RNA genes in cpDNA and mtDNA. Interestingly, PQSs were also associated with specific transposable elements such as TIR and LTR and around them, pointing to their role in their spreading in nuclear DNA. The nonrandom localization of PQSs uncovered their evolutionary and functional significance in the Pisum sativum genome.
- Klíčová slova
- G-quadruplex, G4 propensity, chloroplast DNA, sequence prediction,
- MeSH
- 5' nepřekládaná oblast MeSH
- G-kvadruplexy * MeSH
- genom rostlinný MeSH
- hrách setý genetika MeSH
- lidé MeSH
- sekvence nukleotidů MeSH
- transpozibilní elementy DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- transpozibilní elementy DNA MeSH
We have identified seven putative guanine quadruplexes (G4) in the RNA genome of tick-borne encephalitis virus (TBEV), a flavivirus causing thousands of human infections and numerous deaths every year. The formation of G4s was confirmed by biophysical methods on synthetic oligonucleotides derived from the predicted TBEV sequences. TBEV-5, located at the NS4b/NS5 boundary and conserved among all known flaviviruses, was tested along with its mutated variants for interactions with a panel of known G4 ligands, for the ability to affect RNA synthesis by the flaviviral RNA-dependent RNA polymerase (RdRp) and for effects on TBEV replication fitness in cells. G4-stabilizing TBEV-5 mutations strongly inhibited RdRp RNA synthesis and exhibited substantially reduced replication fitness, different plaque morphology and increased sensitivity to G4-binding ligands in cell-based systems. In contrast, strongly destabilizing TBEV-5 G4 mutations caused rapid reversion to the wild-type genotype. Our results suggest that there is a threshold of stability for G4 sequences in the TBEV genome, with any deviation resulting in either dramatic changes in viral phenotype or a rapid return to this optimal level of G4 stability. The data indicate that G4s are critical elements for efficient TBEV replication and are suitable targets to tackle TBEV infection.
- MeSH
- antivirové látky * farmakologie terapeutické užití MeSH
- G-kvadruplexy * MeSH
- klíšťová encefalitida farmakoterapie genetika MeSH
- lidé MeSH
- ligandy MeSH
- RNA virová genetika MeSH
- RNA-dependentní RNA-polymerasa genetika MeSH
- viry klíšťové encefalitidy * účinky léků genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky * MeSH
- ligandy MeSH
- RNA virová MeSH
- RNA-dependentní RNA-polymerasa MeSH
Parasitic helminths infecting humans are highly prevalent infecting ∼2 billion people worldwide, causing inflammatory responses, malnutrition and anemia that are the primary cause of morbidity. In addition, helminth infections of cattle have a significant economic impact on livestock production, milk yield and fertility. The etiological agents of helminth infections are mainly Nematodes (roundworms) and Platyhelminths (flatworms). G-quadruplexes (G4) are unusual nucleic acid structures formed by G-rich sequences that can be recognized by specific G4 ligands. Here we used the G4Hunter Web Tool to identify and compare potential G4 sequences (PQS) in the nuclear and mitochondrial genomes of various helminths to identify G4 ligand targets. PQS are nonrandomly distributed in these genomes and often located in the proximity of genes. Unexpectedly, a Nematode, Ascaris lumbricoides, was found to be highly enriched in stable PQS. This species can tolerate high-stability G4 structures, which are not counter selected at all, in stark contrast to most other species. We experimentally confirmed G4 formation for sequences found in four different parasitic helminths. Small molecules able to selectively recognize G4 were found to bind to Schistosoma mansoni G4 motifs. Two of these ligands demonstrated potent activity both against larval and adult stages of this parasite.
- MeSH
- cizopasní červi genetika MeSH
- G-kvadruplexy * MeSH
- genom MeSH
- hlístice * genetika MeSH
- lidé MeSH
- ligandy MeSH
- paraziti genetika MeSH
- ploštěnci * genetika MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
The role of G-quadruplex (G4) RNA structures is multifaceted and controversial. Here, we have used as a model the EBV-encoded EBNA1 and the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded LANA1 mRNAs. We have compared the G4s in these two messages in terms of nucleolin binding, nuclear mRNA retention, and mRNA translation inhibition and their effects on immune evasion. The G4s in the EBNA1 message are clustered in one repeat sequence and the G4 ligand PhenDH2 prevents all G4-associated activities. The RNA G4s in the LANA1 message take part in similar multiple mRNA functions but are spread throughout the message. The different G4 activities depend on flanking coding and non-coding sequences and, interestingly, can be separated individually. Together, the results illustrate the multifunctional, dynamic and context-dependent nature of G4 RNAs and highlight the possibility to develop ligands targeting specific RNA G4 functions. The data also suggest a common multifunctional repertoire of viral G4 RNA activities for immune evasion.
- MeSH
- G-kvadruplexy * MeSH
- intergenová DNA chemie genetika MeSH
- lidé MeSH
- regulace genové exprese MeSH
- RNA virová MeSH
- RNA chemie genetika MeSH
- transport RNA MeSH
- virus Epsteinův-Barrové - jaderné antigeny chemie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- EBV-encoded nuclear antigen 1 MeSH Prohlížeč
- intergenová DNA MeSH
- RNA virová MeSH
- RNA MeSH
- virus Epsteinův-Barrové - jaderné antigeny MeSH