Nejvíce citovaný článek - PubMed ID 34219022
Understanding the proximate and ultimate causes of genome size variation has been the focus of considerable research. However, the extent and cause of intraspecific variation in genome size are debated and poorly understood. This study aimed to test the role of genome size in adaptation through variations in intraspecific genome size. Genome size was measured in 53 Roscoea tibetica populations from the Hengduan Mountains using flow cytometry. Stomatal size and density data were collected from wild and common garden populations. Associations among genome size, environmental factors, and stomatal traits were explored. We found that high genome size variability was positively correlated with most environmental factors but negatively correlated with solar radiation during the growing season. The environment, rather than geography, significantly influenced variations in genome size. Stomatal traits measured in the wild were significantly correlated with genome size, but no such correlations were detected in the common garden. Populations in the common garden had larger stomatal sizes and lower stomatal densities. Populations with smaller genome size presented a larger degree of stomatal trait variation from the wild to the common garden. Our findings suggest that intraspecific genome size has undergone adaptive evolution driven by environmental stress. A smaller genome size is more advantageous for the alpine ginger to adapt to and thrive in changing alpine habitats.
- Klíčová slova
- Roscoea tibetica, adaptation, common garden, environmental factors, intraspecific genome size, stomatal traits,
- MeSH
- délka genomu * MeSH
- fyziologická adaptace * genetika MeSH
- genom rostlinný * MeSH
- průduchy rostlin genetika MeSH
- zázvor lékařský * genetika MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Genome size is influenced by natural selection and genetic drift acting on variations from polyploidy and repetitive DNA sequences. We hypothesized that centromere drive, where centromeres compete for inclusion in the functional gamete during meiosis, may also affect genome and chromosome size. This competition occurs in asymmetric meiosis, where only one of the four meiotic products becomes a gamete. If centromere drive influences chromosome size evolution, it may also impact post-polyploid diploidization, where a polyploid genome is restructured to function more like a diploid through chromosomal rearrangements, including fusions. We tested if plant lineages with asymmetric meiosis exhibit faster chromosome size evolution compared to those with only symmetric meiosis, which lack centromere drive as all four meiotic products become gametes. We also examined if positive selection on centromeric histone H3 (CENH3), a protein that can suppress centromere drive, is more frequent in these asymmetric lineages. METHODS: We analysed plant groups with different meiotic modes: asymmetric in gymnosperms and angiosperms, and symmetric in bryophytes, lycophytes and ferns. We selected species based on available CENH3 gene sequences and chromosome size data. Using Ornstein-Uhlenbeck evolutionary models and phylogenetic regressions, we assessed the rates of chromosome size evolution and the frequency of positive selection on CENH3 in these clades. RESULTS: Our analyses showed that clades with asymmetric meiosis have a higher frequency of positive selection on CENH3 and increased rates of chromosome size evolution compared to symmetric clades. CONCLUSIONS: Our findings support the hypothesis that centromere drive accelerates chromosome and genome size evolution, potentially also influencing the process of post-polyploid diploidization. We propose a model which in a single framework helps explain the stability of chromosome size in symmetric lineages (bryophytes, lycophytes and ferns) and its variability in asymmetric lineages (gymnosperms and angiosperms), providing a foundation for future research in plant genome evolution.
- Klíčová slova
- Angiosperms, CENH3, asymmetric and symmetric meiosis, bryophytes, centromere drive, chromosome size, ferns, genome size, gymnosperms, lycophytes, post-polyploid diploidization,
- MeSH
- biologická evoluce MeSH
- centromera * genetika MeSH
- chromozomy rostlin * genetika MeSH
- cykasy genetika MeSH
- délka genomu * MeSH
- fylogeneze MeSH
- genom rostlinný * genetika MeSH
- histony genetika metabolismus MeSH
- kapradiny genetika fyziologie MeSH
- Magnoliopsida genetika MeSH
- meióza * genetika MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- rostliny genetika MeSH
- selekce (genetika) MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histony MeSH
BACKGROUND: Species of the carnivorous family Lentibulariaceae exhibit the smallest genomes in flowering plants. We explored the hypothesis that their minute genomes result from the unique mitochondrial cytochrome c oxidase (COX) mutation. The mutation may boost mitochondrial efficiency, which is especially useful for suction-bladder traps of Utricularia, but also increase DNA-damaging reactive oxygen species, leading to genome shrinkage through deletion-biased DNA repair. We aimed to explore the impact of this mutation on genome size, providing insights into genetic mutation roles in plant genome evolution under environmental pressures. METHODS: We compiled and measured genome and mean chromosome sizes for 127 and 67 species, respectively, representing all three genera (Genlisea, Pinguicula and Utricularia) of Lentibulariaceae. We also isolated and analysed COX sequences to detect the mutation. Through phylogenetic regressions and Ornstein-Uhlenbeck models of trait evolution, we assessed the impact of the COX mutation on the genome and chromosome sizes across the family. RESULTS: Our findings reveal significant correlations between the COX mutation and smaller genome and chromosome sizes. Specifically, species carrying the ancestral COX sequence exhibited larger genomes and chromosomes than those with the novel mutation. This evidence supports the notion that the COX mutation contributes to genome downsizing, with statistical analyses confirming a directional evolution towards smaller genomes in species harbouring these mutations. CONCLUSIONS: Our study confirms that the COX mutation in Lentibulariaceae is associated with genome downsizing, probably driven by increased reactive oxygen species production and subsequent DNA damage requiring deletion-biased repair mechanisms. While boosting mitochondrial energy output, this genetic mutation compromises genome integrity and may potentially affect recombination rates, illustrating a complex trade-off between evolutionary advantages and disadvantages. Our results highlight the intricate processes by which genetic mutations and environmental pressures shape genome size evolution in carnivorous plants.
- Klíčová slova
- Genlisea, Pinguicula, Utricularia, Carnivory, Lentibulariaceae, chromosome size, cytochrome oxidase, genome size, recombination rate, smallest genomes,
- MeSH
- délka genomu * MeSH
- fylogeneze MeSH
- genom rostlinný * MeSH
- Magnoliopsida genetika MeSH
- molekulární evoluce MeSH
- mutace MeSH
- respirační komplex IV genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- respirační komplex IV MeSH
Genome size variation is a crucial aspect of plant evolution, influenced by a complex interplay of factors. Repetitive elements, which are fundamental components of genomic architecture, often play a role in genome expansion by selectively amplifying specific repeat motifs. This study focuses on Amomum, a genus in the ginger family (Zingiberaceae), known for its 4.4-fold variation in genome size. Using a robust methodology involving PhyloNet reconstruction, RepeatExplorer clustering, and repeat similarity-based phylogenetic network construction, we investigated the repeatome composition, analyzed repeat dynamics, and identified potential hybridization events within the genus. Our analysis confirmed the presence of four major infrageneric clades (A-D) within Amomum, with clades A-C exclusively comprising diploid species (2n = 48) and clade D encompassing both diploid and tetraploid species (2n = 48 and 96). We observed an increase in the repeat content within the genus, ranging from 84% to 89%, compared to outgroup species with 75% of the repeatome. The SIRE lineage of the Ty1-Copia repeat superfamily was prevalent in most analyzed ingroup genomes. We identified significant difference in repeatome structure between the basal Amomum clades (A, B, C) and the most diverged clade D. Our investigation revealed evidence of ancient hybridization events within Amomum, coinciding with a substantial proliferation of multiple repeat groups. This finding supports the hypothesis that ancient hybridization is a driving force in the genomic evolution of Amomum. Furthermore, we contextualize our findings within the broader context of genome size variations and repeatome dynamics observed across major monocot lineages. This study enhances our understanding of evolutionary processes within monocots by highlighting the crucial roles of repetitive elements in shaping genome size and suggesting the mechanisms that drive these changes.
- Klíčová slova
- 5S rDNA, Zingiberaceae, genome evolution, genome size, interspecific hybridization, phylogeny, repeatome, repetitive DNA,
- Publikační typ
- časopisecké články MeSH
Our results indicate the existence of interploidy gene flow in Cystopteris fragilis, resulting in sexual triploid and diploid gametophytes from pentaploid parents. Similar evolutionary dynamics might operate in other fern complexes and need further investigation. Polyploidization and hybridization are a key evolutionary processes in ferns. Here, we outline an interploidy gene flow pathway operating in the polyploid Cystopteris fragilis complex. The conditions necessary for the existence of this pathway were tested. A total of 365 C. fragilis individuals were collected covering representatives of all three predominant ploidy levels (tetraploid, pentaploid, and hexaploid), cultivated, had their ploidy level estimated by flow cytometry, and their spores collected. The spores, as well as gametophytes and sporophytes established from them, were analysed by flow cytometry. Spore abortion rate was also estimated. In tetraploids, we observed the formation of unreduced (tetraploid) spores (ca 2%). Collected pentaploid individuals indicate ongoing hybridization between ploidy levels. Pentaploids formed up to 52% viable spores, ca 79% of them reduced, i.e. diploid and triploid. Reduced spores formed viable gametophytes, and, in the case of triploids, filial hexaploid sporophytes, showing evidence of sexual reproduction. Some tetraploid sporophytes reproduce apomictically (based on uniform ploidy of their metagenesis up to filial sporophytes). Triploid and diploid gametophytes from pentaploid parents are able to mate among themselves, or with "normal" reduced gametophytes from the sexual tetraploid sporophytes (the dominant ploidy level in the sporophytes in this populations), to produce tetraploid, pentaploid, and hexaploid sporophytes, allowing for geneflow from the pentaploids to both the tetraploid and hexaploid populations. Similar evolutionary dynamics might operate in other fern complexes and need further investigation.
- Klíčová slova
- Apomixis, Cystopteris, Diplospores, Ferns, Flow cytometry, Gametophytes, Interploidy gene flow, Mixed mating, Ploidy reduction, Sporogenesis,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Several lines of evidence indicate that carbohydrate storage in plant below-ground organs might be positively related to genome size because both these plant properties represent resource sinks and can affect cell size, cell cycle time, water-use efficiency and plant growth. However, plants adapted to disturbance, such as root sprouters, could be an exception because their strategy would require higher carbohydrate reserves to fuel biomass production but small genomes to complete their cell cycles faster. METHODS: We used data from a field survey to test the relationship between genome size and the probability of root sprouting ability in 172 Central European herbaceous species. Additionally, we conducted a pot experiment with 19 herbaceous species with different sprouting ability (nine congeneric pairs plus one species), and measured root non-structural carbohydrate concentrations and pools at the end of a growing season. KEY RESULTS: In the Central European flora, the probability of root sprouting ability was lower in large-genome species but this pattern was weak. In the pot experiment, both total non-structural and water-soluble carbohydrates (mainly fructans) were positively and non-linearly related to genome size, regardless of sprouting strategy. The concentrations of mono- and disaccharides and all carbohydrate pools showed no link to genome size, and starch was absent in large-genome species. The link between genome size and carbohydrate storage was less apparent at a small phylogenetic scale because we only observed a higher carbohydrate concentration in species with larger genomes for four of the species pairs. CONCLUSIONS: Root sprouters may have smaller genomes because of their frequent occurrence in dry and open habitats. Large-genome species with presumably large cells and vacuoles could accumulate more water-soluble carbohydrates at the end of the growing season to fuel their growth and perhaps protect vulnerable organs from freezing early in the next season.
- Klíčová slova
- Below-ground organ, carbon storage, cell size, fructan, genome size, root sprouting,
- MeSH
- délka genomu MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- kořeny rostlin MeSH
- metabolismus sacharidů MeSH
- rostliny MeSH
- sacharidy * analýza MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- sacharidy * MeSH
- voda MeSH
Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat 'communities' are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat 'community' composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat 'communities'.
- Klíčová slova
- Arecaceae (palms), adaptation, ecology, genome size, phylogenetic regression, plant evolution, trait evolution, transposable elements,
- MeSH
- Arecaceae * genetika MeSH
- délka genomu MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- molekulární evoluce MeSH
- retroelementy * MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- retroelementy * MeSH
BACKGROUND AND AIMS: Plant tissue nitrogen (N) and phosphorus (P) and genome traits, such as genome size and guanine-cytosine (GC) content, scale with growth or metabolic rates and are linked to plant ecological strategy spectra. Tissue NP stoichiometry and genome traits are reported to affect plant growth, metabolic rates or ecological strategies in contrasting ways, although the elemental costs for building and maintaining DNA are typically overlooked. METHODS: We formulated stoichiometry- and ecology-based predictions on the relationship between genome size and GC content to tissue N, P and N : P and tested them on a set of 130 herbaceous species from a temperate grassland using ordinary, phylogenetic and quantile regression. KEY RESULTS: Genome size was only negatively linked to plant N and N : P in species with very small genomes. We found no link between genome size and plant P. GC content was negatively linked to plant N and P but we found these significant links consistently in both GC-rich and GC-poor species. Finally, GC content correlated positively with plant N : P but only in species with GC-rich genomes. CONCLUSIONS: Our results provide stronger support for the ecology-based predictions than the stoichiometry-based predictions, and for the links between GC content and plant N and P stoichiometry than for genome size. We argue that the theories of plant metabolic rates and ecological strategies (resource-acquisitive vs. conservative or ruderal vs. stress-tolerator spectra) better explain interspecific genome-NP stoichiometry relationships at the tissue level (although relatively weakly) than the stoichiometric theory based on the elemental costs for building and maintaining DNA.
- Klíčová slova
- GC content, genome size, nitrogen, phosphorus, plant ecological strategies, stoichiogenomics, tissue stoichiometry,
- MeSH
- cytosin metabolismus MeSH
- délka genomu MeSH
- dusík * metabolismus MeSH
- fosfor * metabolismus MeSH
- fylogeneze MeSH
- guanin metabolismus MeSH
- pastviny MeSH
- rostliny metabolismus MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytosin MeSH
- dusík * MeSH
- fosfor * MeSH
- guanin MeSH
Genome size of alpine plants is not related to their resistance against frost and heat. Genome size is a variable trait in angiosperms, and it was suggested that large genome size represents a constraint in stressful environments. We measured genome size and resistance to frost and heat in 89 species of plants from tropical and temperate alpine habitats. Genome size of the species, ranging from 0.49 pg to 25.8 pg across the entire dataset, was not related to either frost or heat resistance in either group of plants. Genome size does not predict resistance to extreme temperatures in alpine plants and is thus not likely to predict plant responses to climate changes.
- Klíčová slova
- Cellular DNA content, Freezing resistance, Functional traits, Heat resistance, Tropical and temperate mountains,
- MeSH
- délka genomu MeSH
- klimatické změny * MeSH
- roční období MeSH
- rostliny * genetika MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH