Below-ground organ Dotaz Zobrazit nápovědu
BACKGROUND AND AIMS: Understanding the changes in below-ground bud bank density and composition along a climatic gradient is essential for the exploration of species distribution pattern and vegetation composition in response to climatic changes. Nevertheless, investigations on bud banks along climatic gradients are still scarce. The below-ground bud bank is expected to be reduced in size in arid conditions, and costly, bud-bearing organs with long spacers would be replaced by more compact forms with buds that are better protected than those found in moist conditions. METHODS: How total bud density and composition (different bud bank types) change with aridity (calculated value 0·43-0·91), mean annual precipitation (MAP; 93-420 mm) and mean annual temperature (MAT; -1·51 to 6·93 °C) was tested at 21 sites along a 2500-km climatic gradient in the temperate steppe of northern China. CONCLUSIONS: Belowground bud bank density decreases towards the dry, hot end of the climatic gradient. Based on the distribution of bud types along the climatic gradient, bulb buds and tiller buds of tussock grasses seem to be more resistant to environmental stress than rhizome buds. The dominance of annual species and smaller bud banks in arid region implies that plant reproductive strategies and vegetation composition will be shifted in scenarios of increased drought under future climate change.
- Klíčová slova
- Adaptive strategy, aridification, climate change, clonal traits, community dynamics, precipitation gradient,
- MeSH
- biodiverzita * MeSH
- klimatické změny * MeSH
- kořeny rostlin MeSH
- podnebí * MeSH
- rostliny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Čína MeSH
BACKGROUND AND AIMS: Several lines of evidence indicate that carbohydrate storage in plant below-ground organs might be positively related to genome size because both these plant properties represent resource sinks and can affect cell size, cell cycle time, water-use efficiency and plant growth. However, plants adapted to disturbance, such as root sprouters, could be an exception because their strategy would require higher carbohydrate reserves to fuel biomass production but small genomes to complete their cell cycles faster. METHODS: We used data from a field survey to test the relationship between genome size and the probability of root sprouting ability in 172 Central European herbaceous species. Additionally, we conducted a pot experiment with 19 herbaceous species with different sprouting ability (nine congeneric pairs plus one species), and measured root non-structural carbohydrate concentrations and pools at the end of a growing season. KEY RESULTS: In the Central European flora, the probability of root sprouting ability was lower in large-genome species but this pattern was weak. In the pot experiment, both total non-structural and water-soluble carbohydrates (mainly fructans) were positively and non-linearly related to genome size, regardless of sprouting strategy. The concentrations of mono- and disaccharides and all carbohydrate pools showed no link to genome size, and starch was absent in large-genome species. The link between genome size and carbohydrate storage was less apparent at a small phylogenetic scale because we only observed a higher carbohydrate concentration in species with larger genomes for four of the species pairs. CONCLUSIONS: Root sprouters may have smaller genomes because of their frequent occurrence in dry and open habitats. Large-genome species with presumably large cells and vacuoles could accumulate more water-soluble carbohydrates at the end of the growing season to fuel their growth and perhaps protect vulnerable organs from freezing early in the next season.
- Klíčová slova
- Below-ground organ, carbon storage, cell size, fructan, genome size, root sprouting,
- MeSH
- délka genomu MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- kořeny rostlin MeSH
- metabolismus sacharidů MeSH
- rostliny MeSH
- sacharidy * analýza MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- sacharidy * MeSH
- voda MeSH
BACKGROUND AND AIMS: Below-ground carbohydrate storage is considered an adaptation of plants aimed at regeneration after disturbance. A theoretical model by Iwasa and Kubo was empirically tested which predicted (1) that storage of carbohydrates scales allometrically with leaf biomass and (2) when the disturbance regime is relaxed, the ratio of storage to leaf biomass increases, as carbohydrates are not depleted by disturbance. METHODS: These ideas were tested on nine herbaceous species from a temperate meadow and the disturbance regime was manipulated to create recently abandoned and mown plots. Just before mowing in June and at the end of the season in October, plants with below-ground organs were sampled. The material was used to assess the pool of total non-structural carbohydrates and leaf biomass. KEY RESULTS: In half of the cases, a mostly isometric relationship between below-ground carbohydrate storage and leaf biomass in meadow plants was found. The ratio of below-ground carbohydrate storage to leaf biomass did not change when the disturbance regime was less intensive than that for which the plants were adapted. CONCLUSIONS: These findings (isometric scaling relationship between below-ground carbohydrate storage and leaf biomass; no effect of a relaxed disturbance regime) imply that storage in herbs is probably governed by factors other than just the disturbance regime applied once in a growing season.
- Klíčová slova
- Abandonment, TNC, below-ground organs, carbohydrate pool, disturbance, forbs, leaf biomass, meadow, mowing, storage to leaf biomass ratio,
- MeSH
- biomasa * MeSH
- ekosystém * MeSH
- listy rostlin fyziologie MeSH
- Magnoliopsida fyziologie MeSH
- metabolismus sacharidů * MeSH
- pastviny MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Plants use their roots to forage for nutrients in heterogeneous soil environments, but different plant species vastly differ in the intensity of foraging they perform. This diversity suggests the existence of constraints on foraging at the species level. We therefore examined the relationships between the intensity of root foraging and plant body traits across species in order to estimate the degree of coordination between plant body traits and root foraging as a form of plant behavior. We cultivated 37 perennial herbaceous Central European species from open terrestrial habitats in pots with three different spatial gradients of nutrient availability (steep, shallow, and no gradient). We assessed the intensity of foraging as differences in root placement inside pots with and without a spatial gradient of resource supply. For the same set of species, we retrieved data about body traits from available databases: maximum height at maturity, mean area of leaf, specific leaf area, shoot lifespan, ability to self-propagate clonally, maximal lateral spread (in clonal plants only), realized vegetative growth in cultivation, and realized seed regeneration in cultivation. Clonal plants and plants with extensive vegetative growth showed considerably weaker foraging than their non-clonal or slow-growing counterparts. There was no phylogenetic signal in the amount of expressed root foraging intensity. Since clonal plants foraged less than non-clonals and foraging intensity did not seem to be correlated with species phylogeny, we hypothesize that clonal growth itself (i.e., the ability to develop at least partly self-sustaining ramets) may be an answer to soil heterogeneity. Whereas unitary plants use roots as organs specialized for both resource acquisition and transport to overcome spatial heterogeneity in resource supply, clonal plants separate these two functions. Becoming a clonal plant allows higher specialization at the organ level, since a typical clonal plant can be viewed as a network of self-sustainable harvesting units connected together with specialized high-throughput connection organs. This may be an effective alternative for coping with spatial heterogeneity in resource availability.
Although the effects of plants on soil properties are well known, the effects of distance from plant roots to root-free soil on soil properties and associated soil organisms are much less studied. Previous research on the effects of distance from a plant explored specific soil organisms and properties, however, comparative studies across a wide range of plant-associated organisms and multiple model systems are lacking. We conducted a controlled greenhouse experiment using soil from two contrasting habitats. Within each soil type, we cultivated two plant species, individually and in combination, studying soil organisms and properties in the root centre, the root periphery, and the root-free zones. We showed that the distance from the cultivated plant (representing decreasing amount of plant roots) had a significant impact on the abiotic properties of the soil (pH and available P and N) and also on the composition of the fungal, bacterial, and nematode communities. The specific patterns, however, did not always match our expectations. For example, there was no significant relationship between the abundance of fungal pathogens and the distance from the cultivated plant compared to a strong decrease in the abundance of arbuscular mycorrhizal fungi. Changes in soil chemistry along the distance from the cultivated plant were probably one of the important drivers that affected bacterial communities. The abundance of nematodes also decreased with distance from the cultivated plant, and the rate of their responses reflected the distribution of their food sources. The patterns of soil changes along the gradient from plant to root-free soil were largely similar in two contrasting soil types and four plant species or their mixtures. This suggests that our results can be generalised to other systems and contribute to a better understanding of the mechanisms of soil legacy formation.
- Klíčová slova
- AMF, Illumina sequencing, Microbial activity, PLFA/NLFA, Plant-soil (below-ground) interactions,
- MeSH
- ekosystém MeSH
- hlístice fyziologie MeSH
- kořeny rostlin * MeSH
- mykorhiza * fyziologie MeSH
- půda * chemie MeSH
- půdní mikrobiologie * MeSH
- rostliny MeSH
- společenstvo MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda * MeSH
BACKGROUND: Despite many studies on the importance of competition and plants' associations with mutualists and pathogens on plant performance and community organization, the joint effects of these two factors remain largely unexplored. Even less is known about how these joint effects vary through a plant's life in different environmental conditions and how they contribute to the long-term coexistence of species. METHODS: We investigated the role of plant-soil feedback (PSF) in intra- and interspecific competition, using two co-occurring dry grassland species as models. A two-phase PSF experiment was used. In the first phase, soil was conditioned by the two plant species. In the second, we assessed the effect of soil conditioning, competition and drought stress on seedling establishment, plant growth in the first and second vegetation season, and fruit production. We also estimated effects of different treatments on overall population growth rates and predicted the species' potential coexistence. RESULTS: Soil conditioning played a more important role in the early stages of the plants' life (seedling establishment and early growth) than competition. Specifically, we found strong negative intraspecific PSF for biomass production in the first year in both species. Although the effects of soil conditioning persisted in later stages of plant's life, competition and drought stress became more important. Surprisingly, models predicting species coexistence contrasted with the effects on individual life stages, showing that our model species benefit from their self-conditioned soil in the long run. CONCLUSIONS: We provide evidence that the effects of PSF vary through plants' life stages. Our study suggests that we cannot easily predict the effects of soil conditioning on long-term coexistence of species using data only on performance at a single time as commonly done in PSF studies. We also show the importance of using as realistic environmental conditions as possible (such as drought stress experienced in dry grasslands) to draw reasonable conclusions on species coexistence.
- Klíčová slova
- Bromus erectus, Inula salicina, Janzen–Connell hypothesis, Plant–soil (below-ground) interactions, coexistence, germination, moisture treatment, population dynamics, population growth rate, target–neighbour design,
- MeSH
- půda * MeSH
- půdní mikrobiologie MeSH
- rostliny * MeSH
- semenáček MeSH
- vývoj rostlin MeSH
- zpětná vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda * MeSH
RATIONALE: The major objective of this exploratory study was to implement selected ion flow tube mass spectrometry, SIFT-MS, as a method for the on-line quantification of the volatile organic compounds, VOCs, in the headspace of the ground roasted coffee. METHODS: The optimal precursor ions and characteristic analyte ions were selected for real-time SIFT-MS quantification of those VOCs that are the most abundant in the headspace or known to contribute to aroma. NO+ reagent ion reactions were exploited for most of the VOC analyses. VOC identifications were confirmed using gas chromatography/mass spectrometry, GC/MS, coupled with solid-phase microextraction, SPME. RESULTS: Thirty-one VOCs were quantified, including several alcohols, aldehydes, ketones, carboxylic acids, esters and some heterocyclic compounds. Variations in the concentrations of each VOC in the seven regional coffees were typically less than a factor of 2, yet concentrations patterns characteristic of the different regional coffees were revealed by heat map and principal component analyses. The coefficient of variation in the concentrations across the seven coffees was typically below 24% except for furfural, furan, methylfuran and guaiacol. CONCLUSIONS: The SIFT-MS analytical method can be used to quantify in real time the most important odoriferous VOCs in ground coffee headspace to sufficient precision to reveal some differences in concentration patterns for coffee produced in different countries.
- MeSH
- aldehydy analýza MeSH
- alkoholy analýza MeSH
- analýza hlavních komponent MeSH
- analýza potravin metody MeSH
- Coffea chemie MeSH
- hmotnostní spektrometrie metody MeSH
- káva chemie MeSH
- ketony analýza MeSH
- manipulace s potravinami MeSH
- mikroextrakce na pevné fázi metody MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- těkavé organické sloučeniny analýza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aldehydy MeSH
- alkoholy MeSH
- káva MeSH
- ketony MeSH
- těkavé organické sloučeniny MeSH
A combined experimental-computational approach was used to study the self-organization and microenvironment of 1-methylnaphthalene (1MN) deposited on the surface of artificial snow grains from vapors at 238 K. The specific surface area of this snow (1.1 × 10(4) cm(2) g(-1)), produced by spraying very fine droplets of pure water from a nebulizer into liquid nitrogen, was determined using valerophenone photochemistry to estimate the surface coverage by 1MN. Fluorescence spectroscopy at 77 K, in combination with molecular dynamics simulations, and density functional theory (DFT) and second-order coupled cluster (CC2) calculations, provided evidence for the occurrence of ground- and excited-state complexes (excimers) and other associates of 1MN on the snow grains' surface. Only weak excimer fluorescence was observed for a loading of 5 × 10(-6) mol kg(-1), which is ∼2-3 orders of magnitude below monolayer coverage. However, the results indicate that the formation of excimers is favored at higher surface loadings (>5 × 10(-5) mol kg(-1)), albeit still being below monolayer coverage. The calculations of excited states of monomer and associated moieties suggested that a parallel-displaced arrangement is responsible for the excimer emission observed experimentally, although some other associations, such as T-shape dimer structures, which do not provide excimer emission, can still be relatively abundant at this surface concentration. The hydrophobic 1MN molecules, deposited on the ice surface, which is covered by a relatively flexible quasi-liquid layer at 238 K, are then assumed to be capable of dynamic motion resulting in the formation of energetically preferred associations to some extent. The environmental implications of organic compounds' deposition on snow grains and ice are discussed.
BACKGROUND AND AIMS: Understanding biomass allocation among plant organs is crucial for comprehending plant growth optimization, survival and responses to the drivers of global change. Yet, the mechanisms governing mass allocation in vascular plants from extreme elevations exposed to cold and drought stresses remain poorly understood. METHODOLOGY: We analysed organ mass weights and fractions in 258 Himalayan herbaceous species across diverse habitats (wetland, steppe, alpine), growth forms (annual, perennial taprooted, rhizomatous and cushiony) and climatic gradients (3500-6150 m elevation) to explore whether biomass distribution adhered to fixed allometric or optimal partitioning rules, and how variations in size, phylogeny and ecological preferences influence their strategies for resource allocation. KEY FINDINGS: Following optimal partitioning theory, Himalayan plants distribute more biomass to key organs vital for acquiring and preserving limited resources necessary for their growth and survival. Allocation strategies are mainly influenced by plant growth forms and habitat conditions, notably temperature, water availability and evaporative demands. Alpine plants invest primarily in below-ground stem bases for storage and regeneration, reducing above-ground stems while increasing leaf mass fraction to maximize carbon assimilation in their short growing season. Conversely, arid steppe plants prioritize deep roots over leaves to secure water and minimize transpiration. Wetland plants allocate resources to above-ground stems and below-ground rhizomes, enabling them to resist competition and grazing in fertile environments. CONCLUSIONS: Himalayan plants from extreme elevations optimize their allocation strategies to acquire scarce resources under specific conditions, efficiently investing carbon from supportive to acquisitive and protective functions with increasing cold and drought. Intraspecific variation and shared ancestry have not significantly altered biomass allocation strategies of Himalayan plants. Despite diverse evolutionary histories, plants from similar habitats have developed comparable phenotypic structures to adapt to their specific environments. This study offers new insights into plant adaptations in diverse Himalayan environments and underscores the importance of efficient resource allocation for survival and growth in challenging conditions.
- Klíčová slova
- Biomass allocation, Himalayas, allometric partitioning theory, environmental gradients, optimal partitioning theory, phylogeny,
- MeSH
- biomasa * MeSH
- ekosystém MeSH
- fyziologická adaptace * MeSH
- Magnoliopsida * fyziologie růst a vývoj MeSH
- nízká teplota * MeSH
- období sucha * MeSH
- Publikační typ
- časopisecké články MeSH
The root is the below-ground organ of a plant, and it has evolved multiple signaling pathways that allow adaptation of architecture, growth rate, and direction to an ever-changing environment. Roots grow along the gravitropic vector towards beneficial areas in the soil to provide the plant with proper nutrients to ensure its survival and productivity. In addition, roots have developed escape mechanisms to avoid adverse environments, which include direct illumination. Standard laboratory growth conditions for basic research of plant development and stress adaptation include growing seedlings in Petri dishes on medium with roots exposed to light. Several studies have shown that direct illumination of roots alters their morphology, cellular and biochemical responses, which results in reduced nutrient uptake and adaptability upon additive stress stimuli. In this review, we summarize recent methods that allow the study of shaded roots under controlled laboratory conditions and discuss the observed changes in the results depending on the root illumination status.
- Klíčová slova
- D-rootsystem, abiotic stress, auxin, cytokinin, dark-grown roots, direct root illumination, flavonols, light escape mechanism, reactive oxygen species, root growth,
- MeSH
- fyziologická adaptace * MeSH
- kořeny rostlin metabolismus účinky záření MeSH
- regulace genové exprese u rostlin účinky záření MeSH
- rostlinné proteiny genetika metabolismus MeSH
- rostliny metabolismus účinky záření MeSH
- semenáček metabolismus účinky záření MeSH
- světlo * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- rostlinné proteiny MeSH