Nejvíce citovaný článek - PubMed ID 34326426
Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range
Accumulation of environmental chitin in the lungs can lead to pulmonary fibrosis, characterized by inflammatory infiltration and fibrosis in acidic chitinase (Chia)-deficient mice. Transgenic expression of Chia in these mice ameliorated the symptoms, indicating the potential of enzyme supplementation as a promising therapeutic strategy for related lung diseases. This study focuses on utilizing hyperactivated human Chia, which exhibits low activity. We achieved significant activation of human Chia by incorporating nine amino acids derived from the crab-eating monkey (Macaca fascicularis) Chia, known for its robust chitin-degrading activity. The modified human Chia retained high activity across a broad pH spectrum and exhibited enhanced thermal stability. The amino acid substitutions associated with hyperactivation of human Chia activity occurred species specifically in monkey Chia. This discovery highlights the potential of hyperactivated Chia in treating pulmonary diseases resulting from chitin accumulation in human lungs.
- Klíčová slova
- acidic chitinase (Chia), amino acid substitutions, chitin, enzyme engineering, evolution, exon swapping, hyperactivation, primate lineage, treating pulmonary diseases,
- MeSH
- chitin metabolismus MeSH
- chitinasy * genetika metabolismus chemie MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- myši MeSH
- stabilita enzymů MeSH
- substituce aminokyselin MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CHIA protein, human MeSH Prohlížeč
- chitin MeSH
- chitinasy * MeSH
YKL-40, also known as human cartilage glycoprotein-39 (HC-gp39) or CHI3L1, shares structural similarities with chitotriosidase (CHIT1), an active chitinase, but lacks chitinase activity. Despite being a biomarker for inflammatory disorders and cancer, the reasons for YKL-40's inert chitinase function have remained elusive. This study reveals that the loss of chitinase activity in YKL-40 has risen from multiple sequence modifications influencing its chitin affinity. Contrary to the common belief associating the lack of chitinase activity with amino acid substitutions in the catalytic motif, attempts to activate YKL-40 by creating two amino acid mutations in the catalytic motif (MT-YKL-40) proved ineffective. Subsequent exploration that included creating chimeras of MT-YKL-40 and CHIT1 catalytic domains (CatDs) identified key exons responsible for YKL-40 inactivation. Introducing YKL-40 exons 3, 6, or 8 into CHIT1 CatD resulted in chitinase inactivation. Conversely, incorporating CHIT1 exons 3, 6, and 8 into MT-YKL-40 led to its activation. Our recombinant proteins exhibited properly formed disulfide bonds, affirming a defined structure in active molecules. Biochemical and evolutionary analysis indicated that the reduced chitinase activity of MT-YKL-40 correlates with specific amino acids in exon 3. M61I and T69W substitutions in CHIT1 CatD diminished chitinase activity and increased chitin binding. Conversely, substituting I61 with M and W69 with T in MT-YKL-40 triggered chitinase activity while reducing the chitin-binding activity. Thus, W69 plays a crucial role in a unique subsite within YKL-40. These findings emphasize that YKL-40, though retaining the structural framework of a mammalian chitinase, has evolved to recognize chitin while surrendering chitinase activity.
- Klíčová slova
- YKL-40, asthma, biomarker, cartilage biology, chitin, chitin-binding, chitinase, enzyme inactivation, inflammation, tumor marker,
- MeSH
- chitin * metabolismus chemie MeSH
- chitinasy metabolismus genetika chemie MeSH
- exony MeSH
- hexosaminidasy metabolismus chemie genetika MeSH
- katalytická doména MeSH
- lidé MeSH
- molekulární evoluce MeSH
- protein CHI3L1 * metabolismus genetika chemie MeSH
- sekvence aminokyselin MeSH
- substituce aminokyselin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CHI3L1 protein, human MeSH Prohlížeč
- chitin * MeSH
- chitinasy MeSH
- chitotriosidase MeSH Prohlížeč
- hexosaminidasy MeSH
- protein CHI3L1 * MeSH
Placental mammals' ancestors were insectivores, suggesting that modern mammals may have inherited the ability to digest insects. Acidic chitinase (Chia) is a crucial enzyme hydrolyzing significant component of insects' exoskeleton in many species. On the other hand, herbivorous animal groups, such as cattle, have extremely low chitinase activity compared to omnivorous species, e.g., mice. The low activity of cattle Chia has been attributed to R128H mutation. The presence of either of these amino acids correlates with the feeding behavior of different bovid species with R and H determining the high and low enzymatic activity, respectively. Evolutionary analysis indicated that selective constraints were relaxed in 67 herbivorous Chia in Cetartiodactyla. Despite searching for another Chia paralog that could compensate for the reduced chitinase activity, no active paralogs were found in this order. Herbivorous animals' Chia underwent genetic alterations and evolved into a molecule with low activity due to the chitin-free diet.
- Klíčová slova
- Evolutionary biology, Molecular biology, Zoology,
- Publikační typ
- časopisecké články MeSH
Chitooligosaccharides, the degradation products of chitin and chitosan, possess anti-bacterial, anti-tumor, and anti-inflammatory activities. The enzymatic production of chitooligosaccharides may increase the interest in their potential biomedical or agricultural usability in terms of the safety and simplicity of the manufacturing process. Crab-eating monkey acidic chitinase (CHIA) is an enzyme with robust activity in various environments. Here, we report the efficient degradation of chitin and chitosan by monkey CHIA under acidic and high-temperature conditions. Monkey CHIA hydrolyzed α-chitin at 50 °C, producing N-acetyl-d-glucosamine (GlcNAc) dimers more efficiently than at 37 °C. Moreover, the degradation rate increased with a longer incubation time (up to 72 h) without the inactivation of the enzyme. Five substrates (α-chitin, colloidal chitin, P-chitin, block-type, and random-type chitosan substrates) were exposed to monkey CHIS at pH 2.0 or pH 5.0 at 50 °C. P-chitin and random-type chitosan appeared to be the best sources of GlcNAc dimers and broad-scale chitooligosaccharides, respectively. In addition, the pattern of the products from the block-type chitosan was different between pH conditions (pH 2.0 and pH 5.0). Thus, monkey CHIA can degrade chitin and chitosan efficiently without inactivation under high-temperature or low pH conditions. Our results show that certain chitooligosaccharides are enriched by using different substrates under different conditions. Therefore, the reaction conditions can be adjusted to obtain desired oligomers. Crab-eating monkey CHIA can potentially become an efficient tool in producing chitooligosaccharide sets for agricultural and biomedical purposes.
- Klíčová slova
- FACE method, acidic chitinase, chitin, chitooligosaccharides, chitosan,
- MeSH
- chitin * chemie metabolismus analogy a deriváty MeSH
- chitinasy * metabolismus chemie MeSH
- chitosan * chemie MeSH
- hydrolýza MeSH
- koncentrace vodíkových iontů MeSH
- oligosacharidy * chemie MeSH
- substrátová specifita MeSH
- vysoká teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitin * MeSH
- chitinasy * MeSH
- chitosan * MeSH
- oligochitosan MeSH Prohlížeč
- oligosacharidy * MeSH
Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.
- Klíčová slova
- Chia, acidic chitinase, carnivores, digestive enzyme, gene loss, insectivores,
- MeSH
- Carnivora * metabolismus MeSH
- chitin chemie metabolismus MeSH
- chitinasy * genetika metabolismus MeSH
- dieta MeSH
- myši MeSH
- psi MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chitin MeSH
- chitinasy * MeSH
Chitooligosaccharides exhibit several biomedical activities, such as inflammation and tumorigenesis reduction in mammals. The mechanism of the chitooligosaccharides' formation in vivo has been, however, poorly understood. Here we report that mouse acidic chitinase (Chia), which is widely expressed in mouse tissues, can produce chitooligosaccharides from deacetylated chitin (chitosan) at pH levels corresponding to stomach and lung tissues. Chia degraded chitin to produce N-acetyl-d-glucosamine (GlcNAc) dimers. The block-type chitosan (heterogenous deacetylation) is soluble at pH 2.0 (optimal condition for mouse Chia) and was degraded into chitooligosaccharides with various sizes ranging from di- to nonamers. The random-type chitosan (homogenous deacetylation) is soluble in water that enables us to examine its degradation at pH 2.0, 5.0, and 7.0. Incubation of these substrates with Chia resulted in the more efficient production of chitooligosaccharides with more variable sizes was from random-type chitosan than from the block-type form of the molecule. The data presented here indicate that Chia digests chitosan acquired by homogenous deacetylation of chitin in vitro and in vivo. The degradation products may then influence different physiological or pathological processes. Our results also suggest that bioactive chitooligosaccharides can be obtained conveniently using homogenously deacetylated chitosan and Chia for various biomedical applications.
- Klíčová slova
- FACE method, acidic chitinase, block-type chitosan, chitin, chitooligosaccharides, random-type chitosan,
- MeSH
- chitinasy chemie metabolismus MeSH
- chitosan chemie metabolismus MeSH
- difrakce rentgenového záření MeSH
- hydrolýza MeSH
- koncentrace vodíkových iontů * MeSH
- myši MeSH
- oligosacharidy chemie metabolismus MeSH
- orgánová specificita MeSH
- plíce metabolismus MeSH
- substrátová specifita MeSH
- žaludek metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitinasy MeSH
- chitosan MeSH
- oligochitosan MeSH Prohlížeč
- oligosacharidy MeSH