Most cited article - PubMed ID 34575768
Noninvasive Combined Diagnosis and Monitoring of Aspergillus and Pseudomonas Infections: Proof of Concept
The major cause of mortality in people with cystic fibrosis (pwCF) is progressive lung disease characterised by acute and chronic infections, the accumulation of mucus, airway inflammation, structural damage and pulmonary exacerbations. The prevalence of Pseudomonas aeruginosa rises rapidly in the teenage years, and this organism is the most common cause of chronic lung infection in adults with cystic fibrosis (CF). It is associated with an accelerated decline in lung function and premature death. New P. aeruginosa infections are treated with antibiotics to eradicate the organism, while chronic infections require long-term inhaled antibiotic therapy. The prevalence of P. aeruginosa infections has decreased in CF registries since the introduction of CF transmembrane conductance regulator modulators (CFTRm), but clinical observations suggest that chronic P. aeruginosa infections usually persist in patients receiving CFTRm. This indicates that pwCF may still need inhaled antibiotics in the CFTRm era to maintain long-term control of P. aeruginosa infections. Here, we provide an overview of the changing perceptions of P. aeruginosa infection management, including considerations on detection and treatment, the therapy burden associated with inhaled antibiotics and the potential effects of CFTRm on the lung microbiome. We conclude that updated guidance is required on the diagnosis and management of P. aeruginosa infection. In particular, we highlight a need for prospective studies to evaluate the consequences of stopping inhaled antibiotic therapy in pwCF who have chronic P. aeruginosa infection and are receiving CFTRm. This will help inform new guidelines on the use of antibiotics alongside CFTRm.
- Keywords
- Bacterial Infection, Bronchiectasis, Cystic Fibrosis, Respiratory Infection,
- MeSH
- Anti-Bacterial Agents * administration & dosage therapeutic use MeSH
- Administration, Inhalation MeSH
- Cystic Fibrosis * complications microbiology drug therapy MeSH
- Humans MeSH
- Cystic Fibrosis Transmembrane Conductance Regulator * genetics MeSH
- Pseudomonas Infections * drug therapy MeSH
- Pseudomonas aeruginosa * drug effects isolation & purification MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents * MeSH
- Cystic Fibrosis Transmembrane Conductance Regulator * MeSH
BACKGROUND: Siderophores are small iron-binding molecules produced by microorganisms to facilitate iron acquisition from the environment. Radiolabelled siderophores offer a promising solution for infection imaging, as they can specifically target the pathophysiological mechanisms of pathogens. Gallium-68 can replace the iron in siderophores, enabling molecular imaging with positron emission tomography (PET). Stereospecific interactions play a crucial role in the recognition of receptors, transporters, and iron utilisation. Furthermore, these interactions have an impact on the host environment, affecting pharmacokinetics and biodistribution. This study examines the influence of siderophore stereoisomerism on imaging properties, with a focus on ferrirubin (FR) and ferrirhodin (FRH), two cis-trans isomeric siderophores of the ferrichrome type. RESULTS: Tested siderophores were labelled with gallium-68 with high radiochemical purity. The resulting complexes differed in their in vitro characteristics. [68Ga]Ga-FRH showed less hydrophilic properties and higher protein binding values than [68Ga]Ga-FR. The stability studies confirmed the high radiochemical stability of both [68Ga]Ga-siderophores in all examined media. Both siderophores were found to be taken up by S. aureus, K. pneumoniae and P. aeruginosa with similar efficacy. The biodistribution tested in normal mice showed rapid renal clearance with low blood pool retention and fast clearance from examined organs for [68Ga]Ga-FR, whereas [68Ga]Ga-FRH showed moderate retention in blood, resulting in slower pharmacokinetics. PET/CT imaging of mice injected with [68Ga]Ga-FR and [68Ga]Ga-FRH confirmed findings from ex vivo biodistribution studies. In a mouse model of S. aureus myositis, both radiolabeled siderophores showed radiotracer accumulation at the site of infection. CONCLUSIONS: The 68Ga-complexes of stereoisomers ferrirubin and ferrirhodin revealed different pharmacokinetic profiles. In vitro uptake was not affected by isomerism. Both compounds had uptake with the same bacterial culture with similar efficacy. PET/CT imaging showed that the [68Ga]Ga-complexes accumulate at the site of S. aureus infection, highlighting the potential of [68Ga]Ga-FR as a promising tool for infection imaging. In contrast, retention of the radioactivity in the blood was observed for [68Ga]Ga-FRH. In conclusion, the stereoisomerism of potential radiotracers should be considered, as even minor structural differences can influence their pharmacokinetics and, consequently, the results of PET imaging.
- Keywords
- Imaging, Infection, Positron emission tomography, Siderophore, Stereoisomers,
- Publication type
- Journal Article MeSH
Pseudomonas aeruginosa is recognized as a significant cause of morbidity and mortality among nosocomial pathogens. In respiratory infections, P. aeruginosa acts not only as a single player but also collaborates with the opportunistic fungal pathogen Aspergillus fumigatus. This study introduced a QS molecule portfolio as a potential new biomarker that affects the secretion of virulence factors and biofilm formation. The quantitative levels of QS molecules, including 3-o-C12-HSL, 3-o-C8-HSL, C4-HSL, C6-HSL, HHQ, PQS, and PYO, measured using mass spectrometry in a monoculture, indicated metabolic changes during the transition from planktonic to sessile cells. In the co-cultures with A. fumigatus, the profile of abundant QS molecules was reduced to 3-o-C12-HSL, C4-HSL, PQS, and PYO. A decrease in C4-HSL by 50% to 170.6 ± 11.8 ng/mL and an increase 3-o-C12-HSL by 30% up to 784.4 ± 0.6 ng/mL were detected at the stage of the coverage of the hyphae with bacteria. Using scanning electron microscopy, we showed the morphological stages of the P. aeruginosa biofilm, such as cell aggregates, maturated biofilm, and cell dispersion. qPCR quantification of the genome equivalents of both microorganisms suggested that they exhibited an interplay strategy rather than antagonism. This is the first study demonstrating the quantitative growth-dependent appearance of QS molecule secretion in a monoculture of P. aeruginosa and a co-culture with A. fumigatus.
- Keywords
- Aspergillus fumigatus, Pseudomonas aeruginosa, QS system, biofilm, metabolomic analysis, microbial interaction, planktonic cell,
- Publication type
- Journal Article MeSH
Aspergillus fumigatus has been designated by the World Health Organization as a critical priority fungal pathogen. Some commercially available diagnostics for many forms of aspergillosis rely on fungal metabolites. These encompass intracellular molecules, cell wall components, and extracellular secretomes. This review summarizes the shortcomings of antibody tests compared to tests of fungal products in body fluids and highlights the application of β-d-glucan, galactomannan, and pentraxin 3 in bronchoalveolar lavage fluids. We also discuss the detection of nucleic acids and next-generation sequencing, along with newer studies on Aspergillus metallophores.
- Keywords
- PCR, aspergillosis, bronchoalveolar lavage fluid, galactomannan, lateral flow, metagenomic next-generation sequencing, metallophore, serum assays, siderophore, β-d-glucan,
- Publication type
- Journal Article MeSH
- Review MeSH
Invasive pulmonary aspergillosis (IPA) may be a rare cause of granulomatous pneumonia in horses. The mortality of IPA is almost 100%; direct diagnostic tools in horses are needed. Bronchoalveolar lavage fluid (BALF) and serum samples were collected from 18 horses, including individuals suffering from IPA (n = 1), equine asthma (EA, n = 12), and 5 healthy controls. Serum samples were collected from another 6 healthy controls. Samples of BALF (n = 18) were analyzed for Aspergillus spp. DNA, fungal galactomannan (GM), ferricrocin (Fc), triacetylfusarinin C (TafC), and gliotoxin (Gtx). Analysis of 24 serum samples for (1,3)-β-D-glucan (BDG) and GM was performed. Median serum BDG levels were 131 pg/mL in controls and 1142 pg/mL in IPA. Similar trends were observed in BALF samples for GM (Area under the Curve (AUC) = 0.941) and DNA (AUC = 0.941). The fungal secondary metabolite Gtx was detected in IPA BALF and lung tissue samples (86 ng/mL and 2.17 ng/mg, AUC = 1).
The multiple forms of pulmonary aspergillosis caused by Aspergillus species are the most common respiratory mycoses. Although invasive, the analysis of diagnostic biomarkers in bronchoalveolar lavage fluid (BALF) is a clinical standard for diagnosing these conditions. The BALF samples from 22 patients with proven or probable aspergillosis were assayed for human pentraxin 3 (Ptx3), fungal ferricrocin (Fc), and triacetylfusarinine C (TafC) in a retrospective study. The infected group included patients with invasive pulmonary aspergillosis (IPA) and chronic aspergillosis (CPA). The BALF data were compared to a control cohort of 67 patients with invasive pulmonary mucormycosis (IPM), non-Aspergillus colonization, or bacterial infections. The median Ptx3 concentrations in patients with and without aspergillosis were 4545.5 and 242.0 pg/mL, respectively (95% CI, p < 0.05). The optimum Ptx3 cutoff for IPA was 2545 pg/mL, giving a sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 100, 98, 95, and 100%, respectively. The median Ptx3 concentration for IPM was high at 4326 pg/mL. Pentraxin 3 assay alone can distinguish IPA from CPA and invasive fungal disease from colonization. Combining Ptx3 and TafC assays enabled the diagnostic discrimination of IPM and IPA, giving a specificity and PPV of 100%.
- Keywords
- bronchoalveolar lavage fluid, invasive fungal disease, non-neutropenic, pentraxin-3, pulmonary aspergillosis, triacetylfusarinine C,
- Publication type
- Journal Article MeSH