Most cited article - PubMed ID 34683689
Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers
Creating stimulus-sensitive smart catalysts capable of decomposing organic dyes with high efficiency is a critical task in ecology. Combining the advantages of photoactive piezoelectric nanomaterials and ferroelectric polymers can effectively solve this problem by collecting mechanical vibrations and light energy. Using the electrospinning method, we synthesized hybrid polymer-inorganic nanocomposite fiber membranes based on polyvinylidene fluoride (PVDF) and bismuth ferrite (BFO). The samples were studied by scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), total transmittance and diffuse reflectance, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vibrating-sample magnetometer (VSM), and piezopotential measurements. It has been demonstrated that the addition of BFO leads to an increase in the proportion of the polar phase from 86.5% to 96.1% due to the surface ion-dipole interaction. It is shown that the composite exhibits anisotropy of magnetic properties depending on the orientation of the magnetic field. The results of piezo-photocatalytic experiments showed that under the combined action of ultrasonic treatment and irradiation with both visible and UV light, the reaction rate increased in comparison with photolysis, sonolysis, and piezocatalysis. Moreover, for PVDF/BFO, which does not exhibit photocatalytic activity, under the combined action of light and ultrasound, the reaction rate increases by about 3× under UV irradiation and by about 6× under visible light irradiation. This behavior is explained by the piezoelectric potential and the narrowing of the band gap of the composite due to mechanical stress caused by the ultrasound.
- Keywords
- BiFeO3, PVDF, electrospinning, fibers, photocatalysis, piezo-photocatalysis, piezocatalysis, smart materials,
- Publication type
- Journal Article MeSH
Solid polymer electrolytes show their potential to partially replace conventional electrolytes in electrochemical devices. The solvent evaporation rate represents one of many options for modifying the electrode-electrolyte interface by affecting the structural and electrical properties of polymer electrolytes used in batteries. This paper evaluates the effect of solvent evaporation during the preparation of solid polymer electrolytes on the overall performance of an amperometric gas sensor. A mixture of the polymer host, solvent and an ionic liquid was thermally treated under different evaporation rates to prepare four polymer electrolytes. A carbon nanotube-based working electrode deposited by spray-coating the polymer electrolyte layer allowed the preparation of the electrode-electrolyte interface with different morphologies, which were then investigated using scanning electron microscopy and Raman spectroscopy. All prepared sensors were exposed to nitrogen dioxide concentration of 0-10 ppm, and the current responses and their fluctuations were analyzed. Electrochemical impedance spectroscopy was used to describe the sensor with an equivalent electric circuit. Experimental results showed that a higher solvent evaporation rate leads to lower sensor sensitivity, affects associated parameters (such as the detection/quantification limit) and increases the limit of the maximum current flowing through the sensor, while the other properties (hysteresis, repeatability, response time, recovery time) change insignificantly.
- Keywords
- gas sensor, ionic liquid, noise spectroscopy, solid polymer electrolyte,
- Publication type
- Journal Article MeSH
This study is focused on the characterization and investigation of polyvinylidene fluoride (PVDF) nanofibers from the point of view of macro- and nanometer level. The fibers were produced using electrostatic spinning process in air. Two types of fibers were produced since the collector speed (300 rpm and 2000 rpm) differed as the only one processing parameter. Differences in fiber's properties were studied by scanning electron microscopy (SEM) with cross-sections observation utilizing focused ion beam (FIB). The phase composition was determined by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy. The crystallinity was determined by differential scanning calorimetry (DSC), and chemical analysis of fiber's surfaces and bonding states were studied using X-ray photoelectron spectroscopy (XPS). Other methods, such as atomic force microscopy (AFM) and piezoelectric force microscopy (PFM), were employed to describe morphology and piezoelectric response of single fiber, respectively. Moreover, the wetting behavior (hydrophobicity or hydrophilicity) was also studied. It was found that collector speed significantly affects fibers alignment and wettability (directionally ordered fibers produced at 2000 rpm almost super-hydrophobic in comparison with disordered fibers spun at 300 rpm with hydrophilic behavior) as properties at macrolevel. However, it was confirmed that these differences at the macrolevel are closely connected and originate from nanolevel attributes. The study of single individual fibers revealed some protrusions on the fiber's surface, and fibers spun at 300 rpm had a core-shell design, while fibers spun at 2000 rpm were hollow.
- Keywords
- AFM, DSC, FIB, FTIR, PFM, PVDF, Raman spectroscopy, SEM, STEM, XPS, core-shell, electrostatic spinning, hollow, hydrophilic, hydrophobic, nanofibers,
- Publication type
- Journal Article MeSH
Utilizing the triboelectric effect of the fibrous structure, a very low cost and straightforward sensor or an energy harvester can be obtained. A device of this kind can be flexible and, moreover, it can exhibit a better output performance than a device based on the piezoelectric effect. This study is concerned with comparing the properties of triboelectric devices prepared from polyvinylidene fluoride (PVDF) fibers, polyamide 6 (PA) fibers, and fibrous structures consisting of a combination of these two materials. Four types of fibrous structures were prepared, and then their potential for use in triboelectric devices was tested. Namely, individual fibrous mats of (i) PVDF and (ii) PA fibers, and their combination-(iii) PVDF and PA fibers intertwined together. Finally, the fourth kind was (iv), a stratified three-layer structure, where the middle layer from PVDF and PA intertwined fibers was covered by PVDF fibrous layer on one side and by PA fibrous layer on the opposite side. Dielectric properties were examined and the triboelectric response was investigated in a simple triboelectric nanogenerator (TENG) of individual or combined (i-iv) fibrous structures. The highest triboelectric output voltage was observed for the stratified three-layer structure (the structure of iv type) consisting of PVDF and PA individual and intertwined fibrous layers. This TENG generated 3.5 V at peak of amplitude at 6 Hz of excitation frequency and was most sensitive at the excitation signal. The second highest triboelectric response was observed for the individual PVDF fibrous mat, generating 2.8 V at peak at the same excitation frequency. The uniqueness of this work lies in the dielectric and triboelectric evaluation of the fibrous structures, where the materials PA and PVDF were electrospun simultaneously with two needles and thus created a fibrous composite. The structures showed a more effective triboelectric response compared to the fibrous structure electrospun by one needle.
- Keywords
- PA, PVDF, TENG, dielectric properties, electrospinning, fiber composite, triboelectric effect,
- Publication type
- Journal Article MeSH