Nejvíce citovaný článek - PubMed ID 34938151
A conceptual map of invasion biology: Integrating hypotheses into a consensus network
Identifying conditions and traits that allow an introduced species to grow and spread, from being initially rare to becoming abundant (defined as invasiveness), is the crux of invasion ecology. Invasiveness and abundance are related but not the same, and we need to differentiate these concepts. Predicting both species abundance and invasiveness and their relationship in an invaded community is highly contextual, being contingent on the community trait profile and its invasibility. We operationalised a three-pronged invasion framework that considers traits, environmental context, and propagule pressure. Specifically, we measure the invasiveness of an alien species by combining three components (performance reflecting environmental suitability, product of species richness and the covariance between interaction strength and species abundance, and community-level interaction pressure); the expected population growth rate of alien species simply reflects the total effect of propagule pressure and the product of their population size and invasiveness. The invasibility of a community reflects the size of opportunity niches (the integral of positive invasiveness in the trait space) under the given abiotic conditions of the environment. Both species abundance and the surface of invasiveness over the trait space can be dynamic and variable. Whether an introduced species with functional traits similar to those of an abundant species in the community exhibits high or low invasiveness depends largely on the kernel functions of performance and interaction strength with respect to traits and environmental conditions. Knowledge of the covariance between interaction strength and species abundance and these kernel functions, thus, holds the key to accurate prediction of invasion dynamics.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The aim of this study was to compare plant-soil interactions in the native range of two congeneric European species differing in their invasive success in the world: a globally invasive Cirsium vulgare and non-invasive C. oleraceum. We assessed changes in soil nutrients and soil biota following soil conditioning by each species and compared performance of plants grown in self-conditioned and unconditioned soil, from which all, some or no biota was excluded. The invasive species depleted more nutrients than the non-invasive species and coped better with altered nutrient levels. The invasive species had higher seedling establishment which benefited from the presence of unconditioned biota transferred by soil filtrate. Biomass of both species increased in soil with self-conditioned soil filtrate and decreased in soil with self-conditioned whole-soil inoculum compared to unconditioned filtrate and inoculum. However, the increase was smaller and the decrease greater for the invasive species. The invasive species allocated less biomass to roots when associated with harmful biota, reducing negative effects of the biota on its performance. The results show that in the native range the invasive species is more limited by self-conditioned pathogens and benefits more from unconditioned mutualists and thus may benefit more from loss of effectively specialized soil biota in a secondary range. Our study highlights the utility of detailed plant-soil feedback research in species native range for understanding factors regulating species performance in their native range and pinpointing the types of biota involved in their regulation.
- Klíčová slova
- Arbuscular mycorrhizal fungi (AMF), Enemy release hypothesis, Mycorrhizal inoculation potential (MIP), Phospholipid/neutral fatty acid analysis (PLFA/NLFA), Plant invasiveness, Structural equation modelling,
- MeSH
- kořeny rostlin MeSH
- mykorhiza * fyziologie MeSH
- půda MeSH
- půdní mikrobiologie MeSH
- rostliny MeSH
- zavlečené druhy MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda MeSH
Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species' distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders-abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species' introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions-for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.
- Klíčová slova
- distribution–abundance relationship, enemy release, forms of rarity, invasion success, leaf economic spectrum,
- MeSH
- ekosystém MeSH
- fylogeografie * MeSH
- rostliny klasifikace MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
In the current era of Big Data, existing synthesis tools such as formal meta-analyses are critical means to handle the deluge of information. However, there is a need for complementary tools that help to (a) organize evidence, (b) organize theory, and (c) closely connect evidence to theory. We present the hierarchy-of-hypotheses (HoH) approach to address these issues. In an HoH, hypotheses are conceptually and visually structured in a hierarchically nested way where the lower branches can be directly connected to empirical results. Used for organizing evidence, this tool allows researchers to conceptually connect empirical results derived through diverse approaches and to reveal under which circumstances hypotheses are applicable. Used for organizing theory, it allows researchers to uncover mechanistic components of hypotheses and previously neglected conceptual connections. In the present article, we offer guidance on how to build an HoH, provide examples from population and evolutionary biology and propose terminological clarifications.
- Klíčová slova
- hierarchy-of-hypotheses approach, knowledge synthesis, linking evidence to theory, structuring ideas, theory development,
- Publikační typ
- časopisecké články MeSH