Most cited article - PubMed ID 35705720
A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process
Image segmentation using bi-level thresholds works well for straightforward scenarios; however, dealing with complex images that contain multiple objects or colors presents considerable computational difficulties. Multi-level thresholding is crucial for these situations, but it also introduces a challenging optimization problem. This paper presents an improved Reptile Search Algorithm (RSA) that includes a Gbest operator to enhance its performance. The proposed method determines optimal threshold values for both grayscale and color images, utilizing entropy-based objective functions derived from the Otsu and Kapur techniques. Experiments were carried out on 16 benchmark images, which included COVID-19 scans along with standard color and grayscale images. A thorough evaluation was conducted using metrics such as the fitness function, peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and the Friedman ranking test. The results indicate that the proposed algorithm seems to surpass existing state-of-the-art methods, demonstrating its effectiveness and robustness in multi-level thresholding tasks.
- Keywords
- Image segmentation, Medical images, Multi-level threshold, Otsu method, Kapur method, Reptile search algorithm,
- MeSH
- Algorithms * MeSH
- COVID-19 * diagnostic imaging virology MeSH
- Humans MeSH
- Image Processing, Computer-Assisted * methods MeSH
- Signal-To-Noise Ratio MeSH
- SARS-CoV-2 isolation & purification MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
This research introduces a new technique to control constrained nonlinear systems, named Lyapunov-based neural network model predictive control using a metaheuristic optimization approach. This controller utilizes a feedforward neural network model as a prediction model and employs the driving training based optimization algorithm to resolve the related constrained optimization problem. The proposed controller relies on the simplicity and accuracy of the feedforward neural network model and the convergence speed of the driving training based optimization algorithm. The closed-loop stability of the developed controller is ensured by including the Lyapunov function as a constraint in the cost function. The efficiency of the suggested controller is illustrated by controlling the angular speed of three-phase squirrel cage induction motor. The reached results are contrasted to those of other methods, specifically the fuzzy logic controller optimized by teaching learning-based optimization algorithm, the optimized PID with particle swarm optimization algorithm, the neural network model predictive controller based on particle swarm optimization algorithm, and the neural network model predictive controller using driving training based optimization algorithm. This comparative study showcase that the suggested controller provides good accuracy, quickness and robustness due to the obtained values of the mean absolute error, mean square error root mean square error, enhancement percentage, and computing time in the different simulation cases, and it can be efficiently utilized to control constrained nonlinear systems with fast dynamics.
- Keywords
- Constraints, DTBO, Lyapunov function, Metaheuristic, Model predictive control, Neural network, Nonlinear system, Squirrel cage induction motor,
- Publication type
- Journal Article MeSH
This research paper develops a novel hybrid approach, called hybrid particle swarm optimization-teaching-learning-based optimization (hPSO-TLBO), by combining two metaheuristic algorithms to solve optimization problems. The main idea in hPSO-TLBO design is to integrate the exploitation ability of PSO with the exploration ability of TLBO. The meaning of "exploitation capabilities of PSO" is the ability of PSO to manage local search with the aim of obtaining possible better solutions near the obtained solutions and promising areas of the problem-solving space. Also, "exploration abilities of TLBO" means the ability of TLBO to manage the global search with the aim of preventing the algorithm from getting stuck in inappropriate local optima. hPSO-TLBO design methodology is such that in the first step, the teacher phase in TLBO is combined with the speed equation in PSO. Then, in the second step, the learning phase of TLBO is improved based on each student learning from a selected better student that has a better value for the objective function against the corresponding student. The algorithm is presented in detail, accompanied by a comprehensive mathematical model. A group of benchmarks is used to evaluate the effectiveness of hPSO-TLBO, covering various types such as unimodal, high-dimensional multimodal, and fixed-dimensional multimodal. In addition, CEC 2017 benchmark problems are also utilized for evaluation purposes. The optimization results clearly demonstrate that hPSO-TLBO performs remarkably well in addressing the benchmark functions. It exhibits a remarkable ability to explore and exploit the search space while maintaining a balanced approach throughout the optimization process. Furthermore, a comparative analysis is conducted to evaluate the performance of hPSO-TLBO against twelve widely recognized metaheuristic algorithms. The evaluation of the experimental findings illustrates that hPSO-TLBO consistently outperforms the competing algorithms across various benchmark functions, showcasing its superior performance. The successful deployment of hPSO-TLBO in addressing four engineering challenges highlights its effectiveness in tackling real-world applications.
- Keywords
- exploitation, exploration, hybrid-based algorithm, metaheuristic, optimization, particle swarm optimization, teaching–learning-based optimization,
- Publication type
- Journal Article MeSH
In this paper, a new human-based metaheuristic algorithm called Technical and Vocational Education and Training-Based Optimizer (TVETBO) is introduced to solve optimization problems. The fundamental inspiration for TVETBO is taken from the process of teaching work-related skills to applicants in technical and vocational education and training schools. The theory of TVETBO is expressed and mathematically modeled in three phases: (i) theory education, (ii) practical education, and (iii) individual skills development. The performance of TVETBO when solving optimization problems is evaluated on the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that TVETBO, with its high abilities to explore, exploit, and create a balance between exploration and exploitation during the search process, is able to provide effective solutions for the benchmark functions. The results obtained from TVETBO are compared with the performances of twelve well-known metaheuristic algorithms. A comparison of the simulation results and statistical analysis shows that the proposed TVETBO approach provides better results in most of the benchmark functions and provides a superior performance in competition with competitor algorithms. Furthermore, in order to measure the effectiveness of the proposed approach in dealing with real-world applications, TVETBO is implemented on twenty-two constrained optimization problems from the CEC 2011 test suite. The simulation results show that TVETBO provides an effective and superior performance when solving constrained optimization problems of real-world applications compared to competitor algorithms.
- Keywords
- education, exploitation, exploration, human-based, metaheuristic, optimization, technical and vocational education and training,
- Publication type
- Journal Article MeSH
This article's innovation and novelty are introducing a new metaheuristic method called mother optimization algorithm (MOA) that mimics the human interaction between a mother and her children. The real inspiration of MOA is to simulate the mother's care of children in three phases education, advice, and upbringing. The mathematical model of MOA used in the search process and exploration is presented. The performance of MOA is assessed on a set of 52 benchmark functions, including unimodal and high-dimensional multimodal functions, fixed-dimensional multimodal functions, and the CEC 2017 test suite. The findings of optimizing unimodal functions indicate MOA's high ability in local search and exploitation. The findings of optimization of high-dimensional multimodal functions indicate the high ability of MOA in global search and exploration. The findings of optimization of fixed-dimension multi-model functions and the CEC 2017 test suite show that MOA with a high ability to balance exploration and exploitation effectively supports the search process and can generate appropriate solutions for optimization problems. The outcomes quality obtained from MOA has been compared with the performance of 12 often-used metaheuristic algorithms. Upon analysis and comparison of the simulation results, it was found that the proposed MOA outperforms competing algorithms with superior and significantly more competitive performance. Precisely, the proposed MOA delivers better results in most objective functions. Furthermore, the application of MOA on four engineering design problems demonstrates the efficacy of the proposed approach in solving real-world optimization problems. The findings of the statistical analysis from the Wilcoxon signed-rank test show that MOA has a significant statistical superiority compared to the twelve well-known metaheuristic algorithms in managing the optimization problems studied in this paper.
- Publication type
- Journal Article MeSH
Metaheuristic optimization algorithms play an essential role in optimizing problems. In this article, a new metaheuristic approach called the drawer algorithm (DA) is developed to provide quasi-optimal solutions to optimization problems. The main inspiration for the DA is to simulate the selection of objects from different drawers to create an optimal combination. The optimization process involves a dresser with a given number of drawers, where similar items are placed in each drawer. The optimization is based on selecting suitable items, discarding unsuitable ones from different drawers, and assembling them into an appropriate combination. The DA is described, and its mathematical modeling is presented. The performance of the DA in optimization is tested by solving fifty-two objective functions of various unimodal and multimodal types and the CEC 2017 test suite. The results of the DA are compared to the performance of twelve well-known algorithms. The simulation results demonstrate that the DA, with a proper balance between exploration and exploitation, produces suitable solutions. Furthermore, comparing the performance of optimization algorithms shows that the DA is an effective approach for solving optimization problems and is much more competitive than the twelve algorithms against which it was compared to. Additionally, the implementation of the DA on twenty-two constrained problems from the CEC 2011 test suite demonstrates its high efficiency in handling optimization problems in real-world applications.
- Keywords
- drawer, exploitation, exploration, human-inspired methods, optimization,
- Publication type
- Journal Article MeSH
This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO's implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms.
- Keywords
- exploitation, exploration, metaheuristic, optimization, subtraction average, swarm-inspired,
- Publication type
- Journal Article MeSH
A new metaheuristic algorithm called green anaconda optimization (GAO) which imitates the natural behavior of green anacondas has been designed. The fundamental inspiration for GAO is the mechanism of recognizing the position of the female species by the male species during the mating season and the hunting strategy of green anacondas. GAO's mathematical modeling is presented based on the simulation of these two strategies of green anacondas in two phases of exploration and exploitation. The effectiveness of the proposed GAO approach in solving optimization problems is evaluated on twenty-nine objective functions from the CEC 2017 test suite and the CEC 2019 test suite. The efficiency of GAO in providing solutions for optimization problems is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that the proposed GAO approach has a high capability in exploration, exploitation, and creating a balance between them and performs better compared to competitor algorithms. In addition, the implementation of GAO on twenty-one optimization problems from the CEC 2011 test suite indicates the effective capability of the proposed approach in handling real-world applications.
- Keywords
- bio-inspired, exploitation, exploration, green anaconda, metaheuristic, optimization,
- Publication type
- Journal Article MeSH
This article introduces a new metaheuristic algorithm called the Serval Optimization Algorithm (SOA), which imitates the natural behavior of serval in nature. The fundamental inspiration of SOA is the serval's hunting strategy, which attacks the selected prey and then hunts the prey in a chasing process. The steps of SOA implementation in two phases of exploration and exploitation are mathematically modeled. The capability of SOA in solving optimization problems is challenged in the optimization of thirty-nine standard benchmark functions from the CEC 2017 test suite and CEC 2019 test suite. The proposed SOA approach is compared with the performance of twelve well-known metaheuristic algorithms to evaluate further. The optimization results show that the proposed SOA approach, due to the appropriate balancing exploration and exploitation, is provided better solutions for most of the mentioned benchmark functions and has superior performance compared to competing algorithms. SOA implementation on the CEC 2011 test suite and four engineering design challenges shows the high efficiency of the proposed approach in handling real-world optimization applications.
- Keywords
- bio-inspired, engineering systems, exploitation, exploration, metaheuristic, optimization, serval,
- Publication type
- Journal Article MeSH