Nejvíce citovaný článek - PubMed ID 35755635
Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation
The network nature of focal epilepsy is exemplified by mesial temporal lobe epilepsy (mTLE), characterized by focal seizures originating from the mesial temporal neocortex, amygdala, and hippocampus. The mTLE network hypothesis is evident in seizure semiology and interictal comorbidities, both reflecting limbic network dysfunction. The network generating seizures also supports essential physiological functions, including memory, emotion, mood, and sleep. Pathology in the mTLE network often manifests as interictal behavioral disturbances and seizures. The limbic circuit is a vital network, and here we review one of the most common focal epilepsies and its comorbidities. We describe two people with drug resistant mTLE implanted with an investigational device enabling continuous hippocampal local field potential sensing and anterior nucleus of thalamus deep brain stimulation (ANT-DBS) who experienced reversible psychosis during continuous high-frequency stimulation. The mechanism(s) of psychosis remain poorly understood and here we speculate that the anti-epileptic effect of high frequency ANT-DBS may provide insights into the physiology of primary disorders associated with psychosis.
- Klíčová slova
- ANT-DBS, Epilepsy, limbic network, psychosis, seizure,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Objective.This study aims to characterize the time course of impedance, a crucial electrophysiological property of brain tissue, in the human thalamus (THL), amygdala-hippocampus, and posterior hippocampus over an extended period.Approach.Impedance was periodically sampled every 5-15 min over several months in five subjects with drug-resistant epilepsy using an investigational neuromodulation device. Initially, we employed descriptive piecewise and continuous mathematical models to characterize the impedance response for approximately three weeks post-electrode implantation. We then explored the temporal dynamics of impedance during periods when electrical stimulation was temporarily halted, observing a monotonic increase (rebound) in impedance before it stabilized at a higher value. Lastly, we assessed the stability of amplitude and phase over the 24 h impedance cycle throughout the multi-month recording.Main results.Immediately post-implantation, the impedance decreased, reaching a minimum value in all brain regions within approximately two days, and then increased monotonically over about 14 d to a stable value. The models accounted for the variance in short-term impedance changes. Notably, the minimum impedance of the THL in the most epileptogenic hemisphere was significantly lower than in other regions. During the gaps in electrical stimulation, the impedance rebound decreased over time and stabilized around 200 days post-implant, likely indicative of the foreign body response and fibrous tissue encapsulation around the electrodes. The amplitude and phase of the 24 h impedance oscillation remained stable throughout the multi-month recording, with circadian variation in impedance dominating the long-term measures.Significance.Our findings illustrate the complex temporal dynamics of impedance in implanted electrodes and the impact of electrical stimulation. We discuss these dynamics in the context of the known biological foreign body response of the brain to implanted electrodes. The data suggest that the temporal dynamics of impedance are dependent on the anatomical location and tissue epileptogenicity. These insights may offer additional guidance for the delivery of therapeutic stimulation at various time points post-implantation for neuromodulation therapy.
- Klíčová slova
- biological impedance, circadian cycle, epilepsy, implant effect, intracranial monitoring, neuromodulation,
- MeSH
- cizí tělesa * MeSH
- elektrická impedance MeSH
- hluboká mozková stimulace * metody MeSH
- implantované elektrody MeSH
- lidé MeSH
- mozek fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
Numerous physiological processes are cyclical, but sampling these processes densely enough to perform frequency decomposition and subsequent analyses can be challenging. Mathematical approaches for decomposition and reconstruction of sparsely and irregularly sampled signals are well established but have been under-utilized in physiological applications. We developed a basis pursuit denoising with polynomial detrending (BPWP) model that recovers oscillations and trends from sparse and irregularly sampled timeseries. We validated this model on a unique dataset of long-term inter-ictal epileptiform discharge (IED) rates from human hippocampus recorded with a novel investigational device with continuous local field potential sensing. IED rates have well established circadian and multiday cycles related to sleep, wakefulness, and seizure clusters. Given sparse and irregular samples of IED rates from multi-month intracranial EEG recordings from ambulatory humans, we used BPWP to compute narrowband spectral power and polynomial trend coefficients and identify IED rate cycles in three subjects. In select cases, we propose that random and irregular sampling may be leveraged for frequency decomposition of physiological signals. Trial Registration: NCT03946618.
- MeSH
- algoritmy MeSH
- elektroencefalografie metody MeSH
- elektrokortikografie metody MeSH
- epilepsie * patofyziologie diagnóza MeSH
- hipokampus patofyziologie fyziologie MeSH
- lidé MeSH
- modely neurologické MeSH
- počítačové zpracování signálu MeSH
- výpočetní biologie metody MeSH
- záchvaty patofyziologie diagnóza MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
High frequency anterior nucleus of the thalamus deep brain stimulation (ANT DBS) is an established therapy for treatment resistant focal epilepsies. Although high frequency-ANT DBS is well tolerated, patients are rarely seizure free and the efficacy of other DBS parameters and their impact on comorbidities of epilepsy such as depression and memory dysfunction remain unclear. The purpose of this study was to assess the impact of low vs high frequency ANT DBS on verbal memory and self-reported anxiety and depression symptoms. Five patients with treatment resistant temporal lobe epilepsy were implanted with an investigational brain stimulation and sensing device capable of ANT DBS and ambulatory intracranial electroencephalographic (iEEG) monitoring, enabling long-term detection of electrographic seizures. While patients received therapeutic high frequency (100 and 145 Hz continuous and cycling) and low frequency (2 and 7 Hz continuous) stimulation, they completed weekly free recall verbal memory tasks and thrice weekly self-reports of anxiety and depression symptom severity. Mixed effects models were then used to evaluate associations between memory scores, anxiety and depression self-reports, seizure counts, and stimulation frequency. Memory score was significantly associated with stimulation frequency, with higher free recall verbal memory scores during low frequency ANT DBS. Self-reported anxiety and depression symptom severity was not significantly associated with stimulation frequency. These findings suggest the choice of ANT DBS stimulation parameter may impact patients' cognitive function, independently of its impact on seizure rates.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
OBJECTIVE: This study aims to characterize the time course of impedance, a crucial electrophysiological property of brain tissue, in the human thalamus (THL), amygdala-hippocampus (AMG-HPC), and posterior hippocampus (post-HPC) over an extended period. APPROACH: Impedance was periodically sampled every 5-15 minutes over several months in five subjects with drug-resistant epilepsy using an experimental neuromodulation device. Initially, we employed descriptive piecewise and continuous mathematical models to characterize the impedance response for approximately three weeks post-electrode implantation. We then explored the temporal dynamics of impedance during periods when electrical stimulation was temporarily halted, observing a monotonic increase (rebound) in impedance before it stabilized at a higher value. Lastly, we assessed the stability of amplitude and phase over the 24-hour impedance cycle throughout the multi-month recording. MAIN RESULTS: Immediately post-implantation, the impedance decreased, reaching a minimum value in all brain regions within approximately two days, and then increased monotonically over about 14 days to a stable value. The models accounted for the variance in short-term impedance changes. Notably, the minimum impedance of the THL in the most epileptogenic hemisphere was significantly lower than in other regions. During the gaps in electrical stimulation, the impedance rebound decreased over time and stabilized around 200 days post-implant, likely indicative of the foreign body response and fibrous tissue encapsulation around the electrodes. The amplitude and phase of the 24-hour impedance oscillation remained stable throughout the multi-month recording, with circadian variation in impedance dominating the long-term measures. SIGNIFICANCE: Our findings illustrate the complex temporal dynamics of impedance in implanted electrodes and the impact of electrical stimulation. We discuss these dynamics in the context of the known biological foreign body response of the brain to implanted electrodes. The data suggest that the temporal dynamics of impedance are dependent on the anatomical location and tissue epileptogenicity. These insights may offer additional guidance for the delivery of therapeutic stimulation at various time points post-implantation for neuromodulation therapy.
- Klíčová slova
- Biological impedance, Circadian cycle, Epilepsy, Implant effect, Intracranial monitoring, Neuromodulation,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy.SIGNIFICANCE STATEMENT The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.
- Klíčová slova
- brain impedance, circadian rhythm, extracellular space, implantable neural stimulators, long-term data, sleep,
- MeSH
- bdění fyziologie MeSH
- elektrická impedance MeSH
- hipokampus MeSH
- lidé MeSH
- mozek fyziologie MeSH
- spánek REM * fyziologie MeSH
- spánek * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Objective.Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.Approach.Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;p< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;p< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;p< 0.001).Significance.These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.
- Klíčová slova
- canine, implantable devices for sensing and stimulation, intracranial EEG, sleep classification,
- MeSH
- bdění fyziologie MeSH
- elektroencefalografie metody MeSH
- elektrokortikografie MeSH
- psi MeSH
- spánek REM fyziologie MeSH
- spánek * fyziologie MeSH
- stadia spánku * fyziologie MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH