Nejvíce citovaný článek - PubMed ID 36074819
ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization
A gene cadre orchestrates the normal development of sensory and non-sensory cells in the inner ear, segregating the cochlea with a distinct tonotopic sound frequency map, similar brain projection, and five vestibular end-organs. However, the role of genes driving the ear development is largely unknown. Here, we show double deletion of the Iroquois homeobox 3 and 5 transcription factors (Irx3/5 DKO) leads to the fusion of the saccule and the cochlear base. The overlying otoconia and tectorial membranes are absent in the Irx3/5 DKO inner ear, and the primary auditory neurons project fibers to both the saccule and cochlear hair cells. The central neuronal projections from the cochlear apex-base contour are not fully segregated into a dorsal and ventral innervation in the Irx3/5 DKO cochlear nucleus, obliterating the characteristic tonotopic auditory map. Additionally, Irx3/5 deletion reveals a pronounced cochlear-apex-vestibular "vestibular-cochlear" nerve (VCN) bilateral connection that is less noticeable in wild-type control mice. Moreover, the incomplete segregation of apex and base projections that expands fibers to connect with vestibular nuclei. The results suggest the mammalian cochlear apex is a derived lagena reminiscent of sarcopterygians. Thus, Irx3 and 5 are potential evolutionary branch-point genes necessary for balance-sound segregation, which fused into a saccule-cochlea organization.
- Klíčová slova
- brainstem, cochlea, development, tectorial membrane,
- MeSH
- homeodoménové proteiny * genetika metabolismus MeSH
- kochlea * fyziologie MeSH
- myši knockoutované * MeSH
- myši MeSH
- sakulus a utrikulus * fyziologie MeSH
- sluchová dráha fyziologie MeSH
- transkripční faktory * genetika metabolismus nedostatek MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- homeodoménové proteiny * MeSH
- Irx3 protein, mouse MeSH Prohlížeč
- Irx5 protein, mouse MeSH Prohlížeč
- transkripční faktory * MeSH
Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally.
- Klíčová slova
- auditory cortex, cochlea, cochlear nucleus, inferior colliculus, medial geniculate body, superior olivary complex,
- MeSH
- lidé MeSH
- mozek metabolismus růst a vývoj MeSH
- sluch * fyziologie MeSH
- sluchová dráha * fyziologie MeSH
- sluchové korové centrum metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In electroreceptive jawed vertebrates, embryonic lateral line placodes give rise to electrosensory ampullary organs as well as mechanosensory neuromasts. Previous reports of shared gene expression suggest that conserved mechanisms underlie electroreceptor and mechanosensory hair cell development and that electroreceptors evolved as a transcriptionally related "sister cell type" to hair cells. We previously identified only one transcription factor gene, Neurod4, as ampullary organ-restricted in the developing lateral line system of a chondrostean ray-finned fish, the Mississippi paddlefish (Polyodon spathula). The other 16 transcription factor genes we previously validated in paddlefish were expressed in both ampullary organs and neuromasts. Here, we used our published lateral line organ-enriched gene-set (arising from differential bulk RNA-seq in late-larval paddlefish), together with a candidate gene approach, to identify 25 transcription factor genes expressed in the developing lateral line system of a more experimentally tractable chondrostean, the sterlet (Acipenser ruthenus, a small sturgeon), and/or that of paddlefish. Thirteen are expressed in both ampullary organs and neuromasts, consistent with conservation of molecular mechanisms. Seven are electrosensory-restricted on the head (Irx5, Irx3, Insm1, Sp5, Satb2, Mafa and Rorc), and five are the first-reported mechanosensory-restricted transcription factor genes (Foxg1, Sox8, Isl1, Hmx2 and Rorb). However, as previously reported, Sox8 is expressed in ampullary organs as well as neuromasts in a catshark (Scyliorhinus canicula), suggesting the existence of lineage-specific differences between cartilaginous and ray-finned fishes. Overall, our results support the hypothesis that ampullary organs and neuromasts develop via largely conserved transcriptional mechanisms, and identify multiple transcription factors potentially involved in the formation of electrosensory versus mechanosensory lateral line organs.
- Klíčová slova
- ampullary organ, electrosensory, lateral line organs, mechanosensory, neuromast, paddlefish, sterlet, sturgeon,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Maternal diabetes is a recognized risk factor for both short-term and long-term complications in offspring. Beyond the direct teratogenicity of maternal diabetes, the intrauterine environment can influence the offspring's cardiovascular health. Abnormalities in the cardiac sympathetic system are implicated in conditions such as sudden infant death syndrome, cardiac arrhythmic death, heart failure, and certain congenital heart defects in children from diabetic pregnancies. However, the mechanisms by which maternal diabetes affects the development of the cardiac sympathetic system and, consequently, heightens health risks and predisposes to cardiovascular disease remain poorly understood. METHODS AND RESULTS: In the mouse model, we performed a comprehensive analysis of the combined impact of a Hif1a-deficient sympathetic system and the maternal diabetes environment on both heart development and the formation of the cardiac sympathetic system. The synergic negative effect of exposure to maternal diabetes and Hif1a deficiency resulted in the most pronounced deficit in cardiac sympathetic innervation and the development of the adrenal medulla. Abnormalities in the cardiac sympathetic system were accompanied by a smaller heart, reduced ventricular wall thickness, and dilated subepicardial veins and coronary arteries in the myocardium, along with anomalies in the branching and connections of the main coronary arteries. Transcriptional profiling by RNA sequencing (RNA-seq) revealed significant transcriptome changes in Hif1a-deficient sympathetic neurons, primarily associated with cell cycle regulation, proliferation, and mitosis, explaining the shrinkage of the sympathetic neuron population. DISCUSSION: Our data demonstrate that a failure to adequately activate the HIF-1α regulatory pathway, particularly in the context of maternal diabetes, may contribute to abnormalities in the cardiac sympathetic system. In conclusion, our findings indicate that the interplay between deficiencies in the cardiac sympathetic system and subtle structural alternations in the vasculature, microvasculature, and myocardium during heart development not only increases the risk of cardiovascular disease but also diminishes the adaptability to the stress associated with the transition to extrauterine life, thus increasing the risk of neonatal death.
- Klíčová slova
- cardiac sympathetic system, coronary arteries, maternal diabetes, mouse model, sympathetic neurons,
- MeSH
- dítě MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa metabolismus MeSH
- gestační diabetes * metabolismus MeSH
- kardiovaskulární nemoci * metabolismus MeSH
- lidé MeSH
- myokard metabolismus MeSH
- myši MeSH
- novorozenec MeSH
- srdce MeSH
- srdeční selhání * MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- myši MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- Hif1a protein, mouse MeSH Prohlížeč
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.
- MeSH
- aktivace transkripce MeSH
- beta-buňky * MeSH
- buněčná diferenciace genetika MeSH
- endokrinní buňky * MeSH
- transkripční faktory MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transkripční faktory MeSH
BACKGROUND: Glucose homeostasis is dependent on functional pancreatic α and ß cells. The mechanisms underlying the generation and maturation of these endocrine cells remain unclear. RESULTS: We unravel the molecular mode of action of ISL1 in controlling α cell fate and the formation of functional ß cells in the pancreas. By combining transgenic mouse models, transcriptomic and epigenomic profiling, we uncover that elimination of Isl1 results in a diabetic phenotype with a complete loss of α cells, disrupted pancreatic islet architecture, downregulation of key ß-cell regulators and maturation markers of ß cells, and an enrichment in an intermediate endocrine progenitor transcriptomic profile. CONCLUSIONS: Mechanistically, apart from the altered transcriptome of pancreatic endocrine cells, Isl1 elimination results in altered silencing H3K27me3 histone modifications in the promoter regions of genes that are essential for endocrine cell differentiation. Our results thus show that ISL1 transcriptionally and epigenetically controls α cell fate competence, and ß cell maturation, suggesting that ISL1 is a critical component for generating functional α and ß cells.
- Klíčová slova
- Epigenetic histone modification, Pancreas development, Pancreatic endocrine cells, Transcriptome,
- Publikační typ
- časopisecké články MeSH
A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.
- Klíčová slova
- auditory behavior, auditory maps, auditory nuclei, inferior colliculus, spiral ganglion neurons,
- MeSH
- ganglion spirale * enzymologie MeSH
- kochlea embryologie inervace MeSH
- myši MeSH
- neurogeneze * genetika MeSH
- nucleus cochlearis * embryologie MeSH
- proteiny s homeodoménou LIM * genetika fyziologie MeSH
- sluchová dráha * embryologie MeSH
- transkripční faktory * genetika fyziologie MeSH
- vláskové buňky * fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- insulin gene enhancer binding protein Isl-1 MeSH Prohlížeč
- proteiny s homeodoménou LIM * MeSH
- transkripční faktory * MeSH