mechanosensory
Dotaz
Zobrazit nápovědu
In electroreceptive jawed vertebrates, embryonic lateral line placodes give rise to electrosensory ampullary organs as well as mechanosensory neuromasts. Previous reports of shared gene expression suggest that conserved mechanisms underlie electroreceptor and mechanosensory hair cell development and that electroreceptors evolved as a transcriptionally related "sister cell type" to hair cells. We previously identified only one transcription factor gene, Neurod4, as ampullary organ-restricted in the developing lateral line system of a chondrostean ray-finned fish, the Mississippi paddlefish (Polyodon spathula). The other 16 transcription factor genes we previously validated in paddlefish were expressed in both ampullary organs and neuromasts. Here, we used our published lateral line organ-enriched gene-set (arising from differential bulk RNA-seq in late-larval paddlefish), together with a candidate gene approach, to identify 25 transcription factor genes expressed in the developing lateral line system of a more experimentally tractable chondrostean, the sterlet (Acipenser ruthenus, a small sturgeon), and/or that of paddlefish. Thirteen are expressed in both ampullary organs and neuromasts, consistent with conservation of molecular mechanisms. Seven are electrosensory-restricted on the head (Irx5, Irx3, Insm1, Sp5, Satb2, Mafa and Rorc), and five are the first-reported mechanosensory-restricted transcription factor genes (Foxg1, Sox8, Isl1, Hmx2 and Rorb). However, as previously reported, Sox8 is expressed in ampullary organs as well as neuromasts in a catshark (Scyliorhinus canicula), suggesting the existence of lineage-specific differences between cartilaginous and ray-finned fishes. Overall, our results support the hypothesis that ampullary organs and neuromasts develop via largely conserved transcriptional mechanisms, and identify multiple transcription factors potentially involved in the formation of electrosensory versus mechanosensory lateral line organs.
- Klíčová slova
- ampullary organ, electrosensory, lateral line organs, mechanosensory, neuromast, paddlefish, sterlet, sturgeon,
- Publikační typ
- časopisecké články MeSH
This review is focused on the unusual composition of the endolymph of the inner ear and its function in mechanoelectrical transduction. The role of K(+) and Ca(2+) in excitatory influx, the very low Na(+), Ca(2+) and Mg(2+) concentrations of endolymph, stereocilia structure of hair cells and some proteins involved in mechanosensory signal transduction with emphasis on auditory receptors are presented and analyzed in more details. An alternative hypothetical model of ciliary structure and endolymph with a 'normal' composition is discussed. It is concluded that the unique endolymph cation content is more than an energy saving mechanism that avoids disturbing circulatory vibrations to achieve a much better mechanosensory resolution. It is the only possible way to fulfil the requirements for a precise ciliary mechanoelectrical transduction in conditions where pressure events with quite diverse amplitudes and duration are transformed into adequate hair cell membrane depolarizations, which are regulated by a sensitive Ca(2+)-dependent feedback tuning.
- MeSH
- buněčný převod mechanických signálů MeSH
- endolymfa chemie fyziologie MeSH
- lidé MeSH
- vnitřní ucho chemie fyziologie MeSH
- vnitřní vláskové buňky chemie fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The trap of the carnivorous plant Venus flytrap (Dionaea muscipula) catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs) result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl) and P(K) stimulation) on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl) stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA) but jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed.
- MeSH
- buněčný převod mechanických signálů MeSH
- cyklopentany metabolismus MeSH
- cysteinové endopeptidasy metabolismus MeSH
- Droseraceae enzymologie fyziologie MeSH
- listy rostlin enzymologie fyziologie MeSH
- oxylipiny metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklopentany MeSH
- cysteinové endopeptidasy MeSH
- jasmonic acid MeSH Prohlížeč
- oxylipiny MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
BACKGROUND: Migraine is a debilitating neurological disorder with pain profile, suggesting exaggerated mechanosensation. Mechanosensitive receptors of different families, which specifically respond to various mechanical stimuli, have gathered increasing attention due to their potential role in migraine related nociception. Understanding these mechanisms is of principal importance for improved therapeutic strategies. This systematic review comprehensively examines the involvement of mechanosensitive mechanisms in migraine pain pathways. METHODS: A systematic search across the Cochrane Library, Scopus, Web of Science, and Medline was conducted on 8th August 2023 for the period from 2000 to 2023, according to PRISMA guidelines. The review was constructed following a meticulous evaluation by two authors who independently applied rigorous inclusion criteria and quality assessments to the selected studies, upon which all authors collectively wrote the review. RESULTS: We identified 36 relevant studies with our analysis. Additionally, 3 more studies were selected by literature search. The 39 papers included in this systematic review cover the role of the putative mechanosensitive Piezo and K2P, as well as ASICs, NMDA, and TRP family of channels in the migraine pain cascade. The outcome of the available knowledge, including mainly preclinical animal models of migraine and few clinical studies, underscores the intricate relationship between mechanosensitive receptors and migraine pain symptoms. The review presents the mechanisms of activation of mechanosensitive receptors that may be involved in the generation of nociceptive signals and migraine associated clinical symptoms. The gender differences of targeting these receptors as potential therapeutic interventions are also acknowledged as well as the challenges related to respective drug development. CONCLUSIONS: Overall, this analysis identified key molecular players and uncovered significant gaps in our understanding of mechanotransduction in migraine. This review offers a foundation for filling these gaps and suggests novel therapeutic options for migraine treatments based on achievements in the emerging field of mechano-neurobiology.
- Klíčová slova
- ASICs, Headache, K2P, Mechano-neurobiology, Mechanotransduction, Migraine, NMDA, Piezo, TRP,
- MeSH
- bolest MeSH
- buněčný převod mechanických signálů * fyziologie MeSH
- migréna * diagnóza MeSH
- nocicepce fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
Biomechanical models based on the finite element method have already shown their potential in the simulation of the mechanical behaviour of cells. For instance, development of atherosclerosis is accelerated by damage of the endothelium, a monolayer of endothelial cells on the inner surface of arteries. Finite element models enable us to investigate mechanical factors not only at the level of the arterial wall but also at the level of individual cells. To achieve this, several finite element models of endothelial cells with different shapes are presented in this paper. Implementing the recently proposed bendotensegrity concept, these models consider the flexural behaviour of microtubules and incorporate also waviness of intermediate filaments. The suspended and adherent cell models are validated by comparison of their simulated force-deformation curves with experiments from the literature. The flat and dome cell models, mimicking natural cell shapes inside the endothelial layer, are then used to simulate their response in compression and shear which represent typical loads in a vascular wall. The models enable us to analyse the role of individual cytoskeletal components in the mechanical responses, as well as to quantify the nucleus deformation which is hypothesized to be the quantity decisive for mechanotransduction.
BACKGROUND: Within the tumour microenvironment, tumour cells are exposed to different mechanical stimuli such as compression stress, cell-cell and cell-extracellular matrix traction forces, interstitial fluid pressure, and shear stress. Cells actively sense and process this information by the mechanism of mechanotransduction to make decisions about their growth, motility, and differentiation. Indeed, the mechanical properties of the tumour microenvironment can deeply influence the behaviour of cancer cells and promote cancerogenesis. During tumour progression, desmoplasia arises and a positive feedback loop between the stiffening extracellular matrix and the properties enabling tumour expansion is established. Tumour cells can use mechanic stimuli to promote proliferation, increase their migratory and invasive potential, and induce therapeutic resistance. Mechanobio-logy is a progressive multidisciplinary field which studies how mechanical forces influence the behaviour of cells or tissues and may provide some interesting targets for cancer therapy. PURPOSE: In this review, we discuss the mechanical properties of cancer cells and describe the tumour promoting effect of the transformed extracellular matrix. We propose that the differences in the mechanobio-logy of cells and extracellular matrix are significant enough to facilitate tumorigenesis and may provide interesting targets for cancer therapy.
- Klíčová slova
- cancer, extracellular matrix, malignancy, mechanobiology, mechanotransduction, shear stress, therapy resistence,
- MeSH
- biofyzika * MeSH
- buněčný převod mechanických signálů * MeSH
- extracelulární matrix patologie MeSH
- lidé MeSH
- nádorová transformace buněk * MeSH
- nádorové mikroprostředí * MeSH
- nádory patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Hypothesis of regulation of proteosynthetic activity of chondrocytes is suggested. A deformation of the cartilage caused by contact hip joint stress and consequent deformation of the chondrocytes are considered as main factors that could influence the metabolism of the cartilage.
- MeSH
- biologické modely MeSH
- buněčný převod mechanických signálů fyziologie MeSH
- chondrocyty fyziologie MeSH
- fyziologická adaptace fyziologie MeSH
- homeostáza fyziologie MeSH
- kloubní chrupavka fyziologie MeSH
- kyčelní kloub fyziologie MeSH
- lidé MeSH
- mechanický stres MeSH
- zatížení muskuloskeletálního systému fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Stress fibers are actin bundles encompassing actin filaments, actin-crosslinking, and actin-associated proteins that represent the major contractile system in the cell. Different types of stress fibers assemble in adherent cells, and they are central to diverse cellular processes including establishment of the cell shape, morphogenesis, cell polarization, and migration. Stress fibers display specific cellular organization and localization, with ventral fibers present at the basal side, and dorsal fibers and transverse actin arcs rising at the cell front from the ventral to the dorsal side and toward the nucleus. Perinuclear actin cap fibers are a specific subtype of stress fibers that rise from the leading edge above the nucleus and terminate at the cell rear forming a dome-like structure. Perinuclear actin cap fibers are fixed at three points: both ends are anchored in focal adhesions, while the central part is physically attached to the nucleus and nuclear lamina through the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we discuss recent work that provides new insights into the mechanism of assembly and the function of these actin stress fibers that directly link extracellular matrix and focal adhesions with the nuclear envelope.
- Klíčová slova
- Dorsal fibers, Focal adhesions, LINC, Perinuclear actin cap, Stress fibers, α-Actinin,
- MeSH
- aktin zastřešující proteiny metabolismus MeSH
- buněčné jádro metabolismus MeSH
- buněčný převod mechanických signálů fyziologie MeSH
- fokální adheze fyziologie MeSH
- jaderný obal metabolismus MeSH
- kontraktilní svazky fyziologie MeSH
- lidé MeSH
- pohyb buněk fyziologie MeSH
- polarita buněk fyziologie MeSH
- tvar buňky fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- aktin zastřešující proteiny MeSH
A three-dimensional finite element model of a vascular smooth muscle cell is based on models published recently; it comprehends elements representing cell membrane, cytoplasm and nucleus, and a complex tensegrity structure representing the cytoskeleton. In contrast to previous models of eucaryotic cells, this tensegrity structure consists of several parts. Its external and internal parts number 30 struts, 60 cables each, and their nodes are interconnected by 30 radial members; these parts represent cortical, nuclear and deep cytoskeletons, respectively. This arrangement enables us to simulate load transmission from the extracellular space to the nucleus or centrosome via membrane receptors (focal adhesions); the ability of the model was tested by simulation of some mechanical tests with isolated vascular smooth muscle cells. Although material properties of components defined on the basis of the mechanical tests are ambiguous, modelling of different types of tests has shown the ability of the model to simulate substantial global features of cell behaviour, e.g. "action at a distance effect" or the global load-deformation response of the cell under various types of loading. Based on computational simulations, the authors offer a hypothesis explaining the scatter of experimental results of indentation tests.
- MeSH
- analýza metodou konečných prvků MeSH
- biologické modely * MeSH
- buněčný převod mechanických signálů fyziologie MeSH
- cytoskelet MeSH
- lidé MeSH
- mechanický stres MeSH
- myocyty hladké svaloviny chemie cytologie fyziologie MeSH
- počítačová simulace MeSH
- svaly hladké cévní chemie cytologie fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cells are continuously sensing their microenvironment and subsequently respond to different physicochemical cues by the activation or inhibition of different signaling pathways. To study a very complex cellular response, it is necessary to diminish background environmental influences and highlight the particular event. However, surface-driven nonspecific interactions of the abundant biomolecules from the environment influence the targeted cell response significantly. Yes-associated protein (YAP) translocation may serve as a marker of human hepatocellular carcinoma (Huh7) cell responses to the extracellular matrix and surface-mediated stresses. Here, we propose a platform of tunable functionable antifouling poly(carboxybetain) (pCB)-based brushes to achieve a molecularly clean background for studying arginine, glycine, and aspartic acid (RGD)-induced YAP-connected mechanotransduction. Using two different sets of RGD-functionalized zwitterionic antifouling coatings with varying compositions of the antifouling layer, a clear correlation of YAP distribution with RGD functionalization concentrations was observed. On the other hand, commonly used surface passivation by the oligo(ethylene glycol)-based self-assembled monolayer (SAM) shows no potential to induce dependency of the YAP distribution on RGD concentrations. The results indicate that the antifouling background is a crucial component of surface-based cellular response studies, and pCB-based zwitterionic antifouling brush architectures may serve as a potential next-generation easily functionable surface platform for the monitoring and quantification of cellular processes.
- Klíčová slova
- antifouling polymer brushes, cell mechanotransduction, cell signaling, functional biointerfaces, surface modification, zwitterionic material,
- MeSH
- akrylamidy chemie MeSH
- biokompatibilní potahované materiály chemie MeSH
- bioznečištění prevence a kontrola MeSH
- buněčný převod mechanických signálů * MeSH
- extracelulární matrix metabolismus MeSH
- lidé MeSH
- mechanický stres MeSH
- nádorové buněčné linie MeSH
- oligopeptidy chemie MeSH
- protoonkogenní proteiny c-yes metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrylamidy MeSH
- arginyl-glycyl-aspartic acid MeSH Prohlížeč
- biokompatibilní potahované materiály MeSH
- oligopeptidy MeSH
- protoonkogenní proteiny c-yes MeSH
- YES1 protein, human MeSH Prohlížeč
- zwitterion carboxybetaine acrylamide MeSH Prohlížeč