A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.
- Klíčová slova
- auditory behavior, auditory maps, auditory nuclei, inferior colliculus, spiral ganglion neurons,
- MeSH
- ganglion spirale * enzymologie MeSH
- kochlea embryologie inervace MeSH
- myši MeSH
- neurogeneze * genetika MeSH
- nucleus cochlearis * embryologie MeSH
- proteiny s homeodoménou LIM * genetika fyziologie MeSH
- sluchová dráha * embryologie MeSH
- transkripční faktory * genetika fyziologie MeSH
- vláskové buňky * fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- insulin gene enhancer binding protein Isl-1 MeSH Prohlížeč
- proteiny s homeodoménou LIM * MeSH
- transkripční faktory * MeSH
This review provides an up-to-date source of information on the primary auditory neurons or spiral ganglion neurons in the cochlea. These neurons transmit auditory information in the form of electric signals from sensory hair cells to the first auditory nuclei of the brain stem, the cochlear nuclei. Congenital and acquired neurosensory hearing loss affects millions of people worldwide. An increasing body of evidence suggest that the primary auditory neurons degenerate due to noise exposure and aging more readily than sensory cells, and thus, auditory neurons are a primary target for regenerative therapy. A better understanding of the development and function of these neurons is the ultimate goal for long-term maintenance, regeneration, and stem cell replacement therapy. In this review, we provide an overview of the key molecular factors responsible for the function and neurogenesis of the primary auditory neurons, as well as a brief introduction to stem cell research focused on the replacement and generation of auditory neurons.
- Klíčová slova
- auditory pathways, cochlea, genetic mutations, single-cell RNAseq, transcription factor,
- MeSH
- ganglion spirale embryologie fyziologie MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- kochlea embryologie fyziologie MeSH
- lidé MeSH
- mozkový kmen MeSH
- mutace MeSH
- myši MeSH
- neurogeneze MeSH
- neurony fyziologie MeSH
- nucleus cochlearis embryologie fyziologie MeSH
- percepční nedoslýchavost patofyziologie MeSH
- regenerativní lékařství metody MeSH
- sekvence nukleotidů MeSH
- sluchové kmenové evokované potenciály MeSH
- vláskové buňky fyziologie MeSH
- vnitřní ucho embryologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
To examine whether exposure to sodium salicylate disrupts expression of vesicular glutamate transporter 3 (VGLUT3) and whether the alteration in expression corresponds to increased risk for tinnitus. Rats were treated with saline (control) or sodium salicylate (treated) Rats were examined for tinnitus by monitoring gap-pre-pulse inhibition of the acoustic startle reflex (GPIAS). Auditory brainstem response (ABR) was applied to evaluate hearing function after treatment. Rats were sacrificed after injection to obtain the cochlea, cochlear nucleus (CN), and inferior colliculus (IC) for examination of VGLUT3 expression. No significant differences in hearing thresholds between groups were identified (p>0.05). Tinnitus in sodium salicylate-treated rats was confirmed by GPIAS. VGLUT3 encoded by solute carrier family 17 members 8 (SLC17a8) expression was significantly increased in inner hair cells (IHCs) of the cochlea in treated animals, compared with controls (p<0.01). No significant differences in VGLUT3 expression between groups were found for the cochlear nucleus (CN) or IC (p>0.05). Exposure to sodium salicylate may disrupt SLC17a8 expression in IHCs, leading to alterations that correspond to tinnitus in rats. However, the CN and IC are unaffected by exposure to sodium salicylate, suggesting that enhancement of VGLUT3 expression in IHCs may contribute to the pathogenesis of tinnitus.
- MeSH
- antiflogistika nesteroidní škodlivé účinky MeSH
- colliculus inferior účinky léků metabolismus MeSH
- nucleus cochlearis účinky léků metabolismus MeSH
- potkani Wistar MeSH
- salicylan sodný škodlivé účinky MeSH
- sluchový práh účinky léků MeSH
- tinnitus chemicky indukované MeSH
- vezikulární transportní proteiny pro glutamát metabolismus MeSH
- vnitřní vláskové buňky účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- salicylan sodný MeSH
- Slc17a8 protein, rat MeSH Prohlížeč
- vezikulární transportní proteiny pro glutamát MeSH
Hearing depends on extracting frequency, intensity, and temporal properties from sound to generate an auditory map for acoustical signal processing. How physiology intersects with molecular specification to fine tune the developing properties of the auditory system that enable these aspects remains unclear. We made a novel conditional deletion model that eliminates the transcription factor NEUROD1 exclusively in the ear. These mice (both sexes) develop a truncated frequency range with no neuroanatomically recognizable mapping of spiral ganglion neurons onto distinct locations in the cochlea nor a cochleotopic map presenting topographically discrete projections to the cochlear nuclei. The disorganized primary cochleotopic map alters tuning properties of the inferior colliculus units, which display abnormal frequency, intensity, and temporal sound coding. At the behavioral level, animals show alterations in the acoustic startle response, consistent with altered neuroanatomical and physiological properties. We demonstrate that absence of the primary afferent topology during embryonic development leads to dysfunctional tonotopy of the auditory system. Such effects have never been investigated in other sensory systems because of the lack of comparable single gene mutation models.SIGNIFICANCE STATEMENT All sensory systems form a topographical map of neuronal projections from peripheral sensory organs to the brain. Neuronal projections in the auditory pathway are cochleotopically organized, providing a tonotopic map of sound frequencies. Primary sensory maps typically arise by molecular cues, requiring physiological refinements. Past work has demonstrated physiologic plasticity in many senses without ever molecularly undoing the specific mapping of an entire primary sensory projection. We genetically manipulated primary auditory neurons to generate a scrambled cochleotopic projection. Eliminating tonotopic representation to auditory nuclei demonstrates the inability of physiological processes to restore a tonotopic presentation of sound in the midbrain. Our data provide the first insights into the limits of physiology-mediated brainstem plasticity during the development of the auditory system.
- Klíčová slova
- Neurod1 mutation, auditory pathway, cochlear nucleus, inferior colliculus, plasticity, sensory topographical map,
- MeSH
- chování zvířat fyziologie MeSH
- colliculus inferior anatomie a histologie fyziologie MeSH
- ganglion spirale cytologie fyziologie MeSH
- mapování mozku MeSH
- mezencefalon embryologie fyziologie MeSH
- myši knockoutované MeSH
- myši MeSH
- nucleus cochlearis anatomie a histologie fyziologie MeSH
- sluch fyziologie MeSH
- sluchová percepce genetika fyziologie MeSH
- těhotenství MeSH
- transkripční faktory bHLH genetika fyziologie MeSH
- úleková reakce genetika fyziologie MeSH
- vestibulární aparát anatomie a histologie fyziologie MeSH
- vnímání výšky zvuku fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- Neurod1 protein, mouse MeSH Prohlížeč
- transkripční faktory bHLH MeSH
Tone at moderate levels presented to young rats at a stage (postnatal week-4) presumably that has passed the cortical critical period still can enlarge neurons in the auditory cortex. It remains unclear whether this delayed plastic change occurs only in the cortex, or reflects a change taking place in the auditory brainstem. Here we compared sound-exposure effects on neuronal size in the auditory cortex and the midbrain. Starting from postnatal day 22, young rats were exposed to a low-frequency tone (4 kHz at 65 dB SPL) for a period of 3 (postnatal day 22-25) or 7 (postnatal day 22-29) days before sacrifice. Neurons were analyzed morphometrically from 7 μm-thick histological sections. A marked increase in neuronal size (32%) was found at the cortex in the high-frequency region distant from the exposing tone. The increase in the midbrain was even larger (67%) and was found in both the low and high frequency regions. While cell enlargements were clear at day 29, only in the high frequency region of the cortex a slight enlargement was found at day 22, suggesting that the cortical and subcortical changes are synchronized, if not slightly preceded by the cortex. In contrast, no changes in neuronal size were found in the cochlear nucleus or the visual midbrain. Such differential effects of sound-exposure at the auditory centers across cortical and subcortical levels cannot be explained by a simple activity-driven change occurring earlier in the brainstem, and might involve function of other structures as for example the descending auditory system.
- MeSH
- akustická stimulace MeSH
- časové faktory MeSH
- kosti a kostní tkáň MeSH
- krysa rodu Rattus MeSH
- mezencefalon fyziologie MeSH
- mozkový kmen fyziologie MeSH
- neurony metabolismus fyziologie MeSH
- neuroplasticita MeSH
- nucleus cochlearis metabolismus MeSH
- potkani Sprague-Dawley MeSH
- sluch MeSH
- sluchová dráha fyziologie MeSH
- sluchové korové centrum fyziologie MeSH
- zvířata MeSH
- zvuk * MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
SMI-32 antibody recognizes a non-phosphorylated epitope of neurofilament proteins, which are thought to be necessary for the maintenance of large neurons with highly myelinated processes. We investigated the distribution and quantity of SMI-32-immunoreactive(-ir) neurons in individual parts of the rat auditory system. SMI-32-ir neurons were present in all auditory structures; however, in most regions they constituted only a minority of all neurons (10-30%). In the cochlear nuclei, a higher occurrence of SMI-32-ir neurons was found in the ventral cochlear nucleus. Within the superior olivary complex, SMI-32-ir cells were particularly abundant in the medial nucleus of the trapezoid body (MNTB), the only auditory region where SMI-32-ir neurons constituted an absolute majority of all neurons. In the inferior colliculus, a region with the highest total number of neurons among the rat auditory subcortical structures, the percentage of SMI-32-ir cells was, in contrast to the MNTB, very low. In the medial geniculate body, SMI-32-ir neurons were prevalent in the ventral division. At the cortical level, SMI-32-ir neurons were found mainly in layers III, V and VI. Within the auditory cortex, it was possible to distinguish the Te1, Te2 and Te3 areas on the basis of the variable numerical density and volumes of SMI-32-ir neurons, especially when the pyramidal cells of layer V were taken into account. SMI-32-ir neurons apparently form a representative subpopulation of neurons in all parts of the rat central auditory system and may belong to both the inhibitory and excitatory systems, depending on the particular brain region.
- MeSH
- analýza rozptylu MeSH
- colliculus inferior cytologie metabolismus MeSH
- imunohistochemie MeSH
- krysa rodu Rattus MeSH
- metathalamus cytologie metabolismus MeSH
- mikroskopie MeSH
- monoklonální protilátky metabolismus MeSH
- neurofilamentové proteiny metabolismus MeSH
- neurony aferentní metabolismus MeSH
- nucleus cochlearis cytologie metabolismus MeSH
- potkani Long-Evans MeSH
- přední mozek cytologie metabolismus MeSH
- sluchová dráha cytologie MeSH
- sluchové korové centrum cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- monoklonální protilátky MeSH
- neurofilamentové proteiny MeSH
In the Czech Republic, the first implantation of a stimulation electrode into the brainstem was performed on 11 January 1999 in the Department of ORL, Head and Neck Surgery, The First Medical Faculty, Charles University in Prague, University Hospital Motol. The selected patient was a 40-year-old woman with neurofibromatosis type 2 (NF2) who had previously undergone bilateral vestibular schwannoma surgery. Both tumours had been radically removed, the left-sided tumour in 1987, the right-sided one in 1988. She had been completely deaf since the last operation, i.e., for 11 years. The surgery was realized by the international cooperation of three teams. Placement of the electrode pad of the Nucleus CI21 + 1M system on the ventral and dorsal cochlear nuclei was performed. Electrically evoked auditory brainstem responses (EABRs) proved the correct position of the electrode array. The post-operative course was uneventful. Six weeks after the surgery the patient received her speech processor. Since that time, the patient already absolved several sessions of a speech processor tune-up. She uses the device as an aid in lip-reading. No adverse or pathological side effects have been observed. The patient was the 45th person in Europe to receive an ABI and the first in the Czech Republic.
- MeSH
- centrální nedoslýchavost komplikace chirurgie MeSH
- dospělí MeSH
- implantace protézy * MeSH
- lidé MeSH
- mozkový kmen chirurgie MeSH
- neurofibromatóza 2 komplikace chirurgie MeSH
- nucleus cochlearis * MeSH
- odezírání MeSH
- sluchové kmenové evokované potenciály MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH