Most cited article - PubMed ID 36131329
Unraveling axonal mechanisms of traumatic brain injury
INTRODUCTION: Amyloid precursor protein (APP) undergoes striking changes following traumatic brain injury (TBI). Considering its role in the control of gene expression, we investigated whether APP regulates transcription and translation following TBI. METHODS: We assessed brain morphology (n = 4-9 mice/group), transcriptome (n = 3 mice/group), proteome (n = 3 mice/group), and behavior (n = 17-27 mice/group) of wild-type (WT) and APP knock-out (KO) mice either untreated or 10-weeks following TBI. RESULTS: After TBI, WT mice displayed transcriptional programs consistent with late stages of brain repair, hub genes were predicted to impact translation and brain proteome showed subtle changes. APP KO mice largely replicated this transcriptional repertoire, but showed no transcriptional nor translational response to TBI. DISCUSSION: The similarities between WT mice following TBI and APP KO mice suggest that developmental APP deficiency induces a condition reminiscent of late stages of brain repair, hampering the control of gene expression in response to injury. HIGHLIGHTS: 10-weeks after TBI, brains exhibit transcriptional profiles consistent with late stage of brain repair. Developmental APP deficiency maintains brains perpetually in an immature state akin to late stages of brain repair. APP responds to TBI by changes in gene expression at a transcriptional and translational level. APP deficiency precludes molecular brain changes in response to TBI.
- Keywords
- amyloid precursor protein, behavior, brain morphology, brain repair, gene expression, transcription, translation, traumatic brain injury,
- MeSH
- Amyloid beta-Protein Precursor * genetics MeSH
- Disease Models, Animal MeSH
- Brain * metabolism pathology MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Brain Injuries * metabolism genetics pathology MeSH
- Proteome * metabolism MeSH
- Proteomics MeSH
- Transcriptome * MeSH
- Brain Injuries, Traumatic * metabolism genetics pathology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amyloid beta-Protein Precursor * MeSH
- Proteome * MeSH
Experimental studies in flies, mice, and humans suggest a significant role of impaired axonal transport in the pathogenesis of Alzheimer's disease (AD). The mechanisms underlying these impairments in axonal transport, however, remain poorly understood. Here we report that the Swedish familial AD mutation causes a standstill of the amyloid precursor protein (APP) in the axons at the expense of its reduced anterograde transport. The standstill reflects the perturbed directionality of the axonal transport of APP, which spends significantly more time traveling in the retrograde direction. This ineffective movement is accompanied by an enhanced association of dynactin-1 with APP, which suggests that reduced anterograde transport of APP is the result of enhanced activation of the retrograde molecular motor dynein by dynactin-1. The impact of the Swedish mutation on axonal transport is not limited to the APP vesicles since it also reverses the directionality of a subset of early endosomes, which become enlarged and aberrantly accumulate in distal locations. In addition, it also reduces the trafficking of lysosomes due to their less effective retrograde movement. Altogether, our experiments suggest a pivotal involvement of retrograde molecular motors and transport in the mechanisms underlying impaired axonal transport in AD and reveal significantly more widespread derangement of axonal transport pathways in the pathogenesis of AD.
- Keywords
- Alzheimer’s disease, amyloid precursor protein, axonal transport, dynactin-1, early endosomes, familial pathogenic variants, lysosomes,
- MeSH
- Alzheimer Disease * metabolism genetics pathology MeSH
- Amyloid beta-Protein Precursor * genetics metabolism MeSH
- Axonal Transport * genetics MeSH
- Axons metabolism pathology MeSH
- Dynactin Complex metabolism genetics MeSH
- Dyneins metabolism MeSH
- Endosomes metabolism genetics MeSH
- Genetic Variation MeSH
- Humans MeSH
- Lysosomes metabolism MeSH
- Mutation MeSH
- Mice MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Amyloid beta-Protein Precursor * MeSH
- DCTN1 protein, human MeSH Browser
- Dynactin Complex MeSH
- Dyneins MeSH
Axonal homeostasis is maintained by processes that include cytoskeletal regulation, cargo transport, synaptic activity, ionic balance, and energy supply. Several of these processes involve mitochondria to varying degrees. As a transportable powerplant, the mitochondria deliver ATP and Ca2+-buffering capabilities and require fusion/fission to maintain proper functioning. Taking into consideration the long distances that need to be covered by mitochondria in the axons, their transport, distribution, fusion/fission, and health are of cardinal importance. However, axonal homeostasis is disrupted in several disorders of the nervous system, or by traumatic brain injury (TBI), where the external insult is translated into physical forces that damage nervous tissue including axons. The degree of damage varies and can disconnect the axon into two segments and/or generate axonal swellings in addition to cytoskeletal changes, membrane leakage, and changes in ionic composition. Cytoskeletal changes and increased intra-axonal Ca2+ levels are the main factors that challenge mitochondrial homeostasis. On the other hand, a proper function and distribution of mitochondria can determine the recovery or regeneration of the axonal physiological state. Here, we discuss the current knowledge regarding mitochondrial transport, fusion/fission, and Ca2+ regulation under axonal physiological or pathological conditions.
- Keywords
- axonal degeneration, calcium homeostasis, mitochondria, mitochondrial dynamics, mitochondrial transport, traumatic brain injury,
- Publication type
- Journal Article MeSH
- Review MeSH