Nejvíce citovaný článek - PubMed ID 36529801
The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils-a comprehensive review
Potentially toxic element (PTE) contamination deteriorates agricultural land. This study explored the accumulation of excess PTEs (Cd, Pb, and Zn) in soils by shoots of herbaceous plants growing on alluvial sediments of an abandoned mining/smelting site near the Litavka River, Czech Republic, as a means of soil remediation. Determination of total Cd, Pb, and Zn, contents in soil and plant samples decomposed with HNO3 + HCl + HF, HNO3, and H2O2, respectively, were carried out by inductively coupled optical emission spectrometry. The soil Cd, Pb, and Zn contents in the studied site ranged from 40 to 65, 3183 to 3897, and 5108 to 6553 mg kg-1, respectively, indicating serious soil contamination compared to the limits allowed by the FAO/WHO and the Czech Republic. Slightly acidic soil reactions and negative correlations between the pH, C, and N supported the assumption of relative solubility, mobility, and accumulation of studied PTEs by herbaceous species. Shoot accumulation of Cd, Pb, and Zn varied in 22 of 23 species recording a Cd content above the permissible limit. The Zn content in all plants was above the WHO limit. Except for Arabidopsis halleri, with a bioaccumulation factor (BAFshoot) > 1 for Cd and Zn, Equisetum arvense recorded a comparatively higher Cd content (10.3-28 mg kg-1) than all other species. Silene vulgaris (Moench), Leucanthemum vulgare, E. arvense, Achillea millefolium, Carex sp., Dianthus deltoides, Campanula patula, Plantago lanceolata, and Rumex acetosa accumulated more Zn than many plants (> 300 mg kg-1). Although E. arvense had a BAF < 1, it accumulated > 1000 mg Zn kg-1 and supported the phytoextraction of Zn. Only 10 species accumulated Pb above the limit permissible in plants, with L. vulgare recording the highest concentration (40 mg kg-1) among all species. Therefore, the shoots of several plant species showed promising PTE accumulation abilities and deserve more detailed studies concerning their potential use for phytoremediation of Cd-, Pb-, or Zn-contaminated soils.
- Klíčová slova
- Equisetum arvense, Leucanthemum vulgare, Alluvial sediment, Phytoextraction, Phytoremediation, Shoot accumulation,
- MeSH
- biodegradace MeSH
- hornictví MeSH
- kadmium metabolismus MeSH
- látky znečišťující půdu * metabolismus MeSH
- olovo metabolismus MeSH
- půda chemie MeSH
- rostliny * metabolismus MeSH
- zinek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- kadmium MeSH
- látky znečišťující půdu * MeSH
- olovo MeSH
- půda MeSH
- zinek MeSH
Metal contamination (MC) is a growing environmental issue, with metals altering biotic and metabolic pathways and entering the human body through contaminated food, water and inhalation. With continued population growth and industrialisation, MC poses an exacerbating risk to human health and ecosystems. Metal contamination in the environment is expected to continue to increase, requiring effective remediation approaches and harmonised monitoring programmes to significantly reduce the impact on health and the environment. Bio-based methods, such as enhanced phytoextraction and chemical stabilisation, are being used worldwide to remediate contaminated sites. A systematic plant screening of potential metallophytes can identify the most effective candidates for phytoremediation. However, the detection and prediction of MC is complex, non-linear and chaotic, and it frequently overlaps with various other constraints. Rapidly evolving artificial intelligence (AI) algorithms offer promising tools for the detection, growth and activity modelling and management of metallophytes, helping to fill knowledge gaps related to complex metal-environment interactions in different scenarios. By integrating AI with advanced sensor technologies and field-based trials, future research could revolutionize remediation strategies. This interdisciplinary approach holds immense potential in mitigating the detrimental impacts of metal contamination efficiently and sustainably.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH