Nejvíce citovaný článek - PubMed ID 36700926
Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum magneticum for Water Decontamination
Micro- and nanoplastic pollution is pervasive worldwide, infiltrating drinking water and food chains, accumulating in the human body, and posing serious threats to public health and ecosystems. Despite these urgent challenges, effective strategies to curb the widespread presence of micro- and nanoplastics have not yet been sufficiently developed. Here, we present magnetically driven living bacterial microrobots that exhibit a nature-inspired three-dimensional (3D) swarming motion, allowing the dynamic capture and retrieval of aquatic micro- and nanoplastics originating from various commercial products. By combining autonomous propulsion with magnetically guided navigation, we enabled the multimodal swarming manipulation of magnetotactic bacteria-based living microrobots (MTB biobots). The actuation of a rotating magnetic field induces a fish schooling-like 3D swarming navigation, allowing the active capture of micro- and nanoplastics, which are then retrieved from the contaminated water by magnetic separation. Our results show that the 3D magnetic swarming of MTB biobots synergistically enhances the removal efficiencies of both model and real-world microplastics, demonstrating their practical potential in water treatment technologies. Overall, plastic-seeking living bacterial microrobots and their swarm manipulation offer a straightforward and environmentally friendly approach to micro- and nanoplastic treatment, providing a biomachinery-based solution to mitigate the pressing microplastic pollution crisis.
- Klíčová slova
- biohybrid microrobots, magnetically driven, magnetotactic bacteria, microplastics, nanoplastics, swarming behavior, water purification,
- MeSH
- chemické látky znečišťující vodu * izolace a purifikace chemie MeSH
- čištění vody * metody MeSH
- magnetické pole MeSH
- mikroplasty * izolace a purifikace chemie MeSH
- robotika * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- mikroplasty * MeSH
Inspired by Richard Feynman's 1959 lecture and the 1966 film Fantastic Voyage, the field of micro/nanorobots has evolved from science fiction to reality, with significant advancements in biomedical and environmental applications. Despite the rapid progress, the deployment of functional micro/nanorobots remains limited. This review of the technology roadmap identifies key challenges hindering their widespread use, focusing on propulsion mechanisms, fundamental theoretical aspects, collective behavior, material design, and embodied intelligence. We explore the current state of micro/nanorobot technology, with an emphasis on applications in biomedicine, environmental remediation, analytical sensing, and other industrial technological aspects. Additionally, we analyze issues related to scaling up production, commercialization, and regulatory frameworks that are crucial for transitioning from research to practical applications. We also emphasize the need for interdisciplinary collaboration to address both technical and nontechnical challenges, such as sustainability, ethics, and business considerations. Finally, we propose a roadmap for future research to accelerate the development of micro/nanorobots, positioning them as essential tools for addressing grand challenges and enhancing the quality of life.
- Klíčová slova
- collective behavior, functionality, intelligence, micro/nanorobots, nanotechnology, propulsion, smart materials, technological translation,
- MeSH
- lidé MeSH
- nanotechnologie * metody MeSH
- robotika * přístrojové vybavení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ammonia (NH₃) production is a critical industrial process, as ammonia is a key component in fertilizers, essential for global agriculture and food production. However, the current method of synthesizing ammonia, the Haber-Bosch process, is highly energy-intensive, and relies on fossil fuels, contributing substantially to greenhouse gas emissions. Moreover, the centralized nature of the Haber-Bosch process limits its accessibility in remote or resource-limited areas. Photochemical synthesis of ammonia, provides an alternate lower energy, carbon-free pathway compared to the prevailing industrial methods. The photoconversion of nitrate anions, often present in wastewater, offers a greener, more sustainable, and energy-efficient route for both ammonia-generation and wastewater treatment. Photochemical and chemical synthesis of ammonia requires intensive mass-transfer processes, which limits the efficiency of the method. To change the game, in this work, a key new technology of ammonia-generation, a catalytic ammonia generation (AmmoGen) microrobot, which converts nitrate to ammonia using renewable light energy is reported. The magnetic propulsion of the AmmoGen microrobots significantly enhances mass-transfer, and expedites the photosynthesis of ammonia. Overall, this "proof-of-concept" study demonstrates that microrobots can aid in catalytic small molecule activation and generation of value-added products; and are envisaged to pave the way toward new sustainable technologies for catalysis.
- Klíčová slova
- ammonia, magnetically driven, microrobots, nitrate reduction, photosynthesis,
- Publikační typ
- časopisecké články MeSH