Schizophrenia research arose in the twentieth century and is currently rapidly developing, focusing on many parallel research pathways and evaluating various concepts of disease etiology. Today, we have relatively good knowledge about the generation of positive and negative symptoms in patients with schizophrenia. However, the neural basis and pathophysiology of schizophrenia, especially cognitive symptoms, are still poorly understood. Finding new methods to uncover the physiological basis of the mental inabilities related to schizophrenia is an urgent task for modern neuroscience because of the lack of specific therapies for cognitive deficits in the disease. Researchers have begun investigating functional crosstalk between NMDARs and GABAergic neurons associated with schizophrenia at different resolutions. In another direction, the gut microbiota is getting increasing interest from neuroscientists. Recent findings have highlighted the role of a gut-brain axis, with the gut microbiota playing a crucial role in several psychopathologies, including schizophrenia and autism.There have also been investigations into potential therapies aimed at normalizing altered microbiota signaling to the enteric nervous system (ENS) and the central nervous system (CNS). Probiotics diets and fecal microbiota transplantation (FMT) are currently the most common therapies. Interestingly, in rodent models of binge feeding, optogenetic applications have been shown to affect gut colony sensitivity, thus increasing colonic transit. Here, we review recent findings on the gut microbiota-schizophrenia relationship using in vivo optogenetics. Moreover, we evaluate if manipulating actors in either the brain or the gut might improve potential treatment research. Such research and techniques will increase our knowledge of how the gut microbiota can manipulate GABA production, and therefore accompany changes in CNS GABAergic activity.
- Klíčová slova
- Fecal microbiota transplantation, Gut microbiota, Gut optogenetics, NMDA hypoactivity, NMDARs/GABA interaction, Probiotic dietaries, Schizophrenia,
- MeSH
- lidé MeSH
- mozek MeSH
- optogenetika MeSH
- osa mozek-střevo MeSH
- probiotika * MeSH
- schizofrenie * terapie MeSH
- střevní mikroflóra * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: ADHD and alcoholism are psychiatric diseases with pathophysiology related to dopamine system. DAT1 belongs to the SLC6 family of transporters and is involved in the regulation of extracellular dopamine levels. A 40 bp variable number tandem repeat (VNTR) polymorphism in the 3'-untranslated region of DAT1/SLC6A3 gene was previously reported to be associated with various phenotypes involving disturbed regulation of dopaminergic neurotransmission. METHODS: A total of 1312 subjects were included and genotyped for 40 bp VNTR polymorphism of DAT1/SLC6A3 gene in this study (441 alcoholics, 400 non-alcoholic controls, 218 ADHD children and 253 non ADHD children). Using miRBase software, we have performed a computer analysis of VNTR part of DAT1 gene for presence of miRNA binding sites. RESULTS: We have found significant relationships between ADHD and the 40 bp VNTR polymorphisms of DAT1/SLC6A3 gene (P < 0.01). The 9/9 genotype appeared to reduce the risk of ADHD about 0.4-fold (p < 0.04). We also noted an occurrence of rare genotypes in ADHD (frequency different from controls at p < 0.01). No association between alcoholism and genotype frequencies of 40 bp VNTR polymorphism of DAT1/SLC6A3 gene has been detected. CONCLUSIONS: We have found an association between 40 bp VNTR polymorphism of DAT1/SLC6A3 gene and ADHD in the Czech population; in a broad agreement with studies in other population samples. Furthermore, we detected rare genotypes 8/10, 7/10 and 10/11 present in ADHD boys only and identified miRNAs that should be looked at as potential novel targets in the research on ADHD.
- MeSH
- 3' nepřekládaná oblast genetika MeSH
- alkoholismus epidemiologie genetika MeSH
- dítě MeSH
- dospělí MeSH
- epigeneze genetická MeSH
- genotyp MeSH
- hyperkinetická porucha epidemiologie genetika MeSH
- impulzivní chování MeSH
- lidé středního věku MeSH
- lidé MeSH
- minisatelitní repetice genetika MeSH
- mladiství MeSH
- neuropsychologické testy MeSH
- počítačová simulace MeSH
- proteiny přenášející dopamin přes plazmatickou membránu genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- proteiny přenášející dopamin přes plazmatickou membránu MeSH
- SLC6A3 protein, human MeSH Prohlížeč
BACKGROUND: The objective of the study was to examine several polymorphisms in DISC1 and CTNX3 genes as possible risk factors in schizophrenia. DISC1 (disrupted-in-schizophrenia 1) has been studied extensively in relation to mental disease while CTXN3, has only recently emerged as a potential "candidate" gene in schizophrenia. CTXN3 resides in a genomic region (5q21-34) known to be associated with schizophrenia and encodes a protein cortexin 3 which is highly enriched in brain. METHODS: We used ethnically homogeneous samples of 175 male patients and 184 male control subjects. All patients were interviewed by two similarly qualified psychiatrists. Controls were interviewed by one of the authors (O.S.). Genotyping was performed, following amplification by polymerase chain reaction (PCR), using fragment analysis in a standard commercial setting (Applied Biosystems, USA). RESULTS: We have found a statistically significant association between rs6595788 polymorphism of CTXN3 gene and the risk of schizophrenia; the presence of AG genotype increased the risk 1.5-fold. Polymorphisms in DISC1 gene showed only marginally statistically significant association with schizophrenia (rs17817356) or no association whatsoever (rs821597 and rs980989) while two polymorphisms (rs9661837 and rs3737597) were found to be only slightly polymorphic in the samples. CONCLUSION: Evidence available in the literature suggests that altered expression of cortexin 3, either alone, or in parallel with changes in DISC1, could subtly perturb GABAergic neurotransmission and/or metabolism of amyloid precursor protein (APP) in developing brain, thus potentially exposing the affected individual to an increased risk of schizophrenia later in life.
- MeSH
- alely MeSH
- běloši genetika MeSH
- DNA genetika MeSH
- dospělí MeSH
- frekvence genu MeSH
- genetické asociační studie MeSH
- genotyp MeSH
- hodnocení rizik MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- proteiny nervové tkáně genetika MeSH
- rizikové faktory MeSH
- schizofrenie etiologie genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CTXN3 protein, human MeSH Prohlížeč
- DISC1 protein, human MeSH Prohlížeč
- DNA MeSH
- membránové proteiny MeSH
- proteiny nervové tkáně MeSH
Acting appropriately within social contexts requires an ability to appreciate others' mental and emotional states. Indeed, some campaign programs designed to reduce anti-social behaviour seek to elicit empathy for the victims. The effectiveness of these campaigns can be evaluated according to the degree to which they induce such responses, but by applying neuroscientific techniques this can be done at the behavioural and neurophysiological level. Neuroimaging studies aimed at identifying the neural mechanisms behind such socio-cognitive and -emotional processes frequently reveal the role of the superior temporal sulcus (STS). We applied this knowledge to assess the effectiveness of traffic-awareness campaign adverts to induce empathic expression. Functional magnetic resonance imaging (fMRI) data were acquired from 20 healthy male volunteers as they watched these campaign videos consisting of a dramatic sequence of events and catastrophic endings, and control videos without such dramatic endings. Among other structures, a significantly greater neural response was observed within bilateral STS, particularly within the right hemisphere, during the observation of campaign relative to control videos. Furthermore, activation in these brain regions correlated with the subjects' empathic expression. Our results develop our understanding of the role of STS in social cognition. Moreover, our data demonstrate the utility of neuroscientific methods when evaluating the effectiveness of campaign videos in terms of their ability to elicit empathic responses. Our study also demonstrates the utility of these specific stimuli for future neuroscientific research.
- MeSH
- arousal fyziologie MeSH
- dospělí MeSH
- empatie * MeSH
- inzerce jako téma * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladý dospělý MeSH
- mozek fyziologie MeSH
- řízení motorových vozidel psychologie MeSH
- sociální chování MeSH
- spánkový lalok fyziologie MeSH
- světelná stimulace MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH