Acute myeloid leukemia (AML) is the most common form of acute leukemia diagnosed in adults. Despite advances in medical care, the treatment of AML still faces many challenges, such as treatment-related toxicities, that limit the use of high-intensity chemotherapy, especially in elderly patients. Currently, various immunotherapeutic approaches, that is, CAR-T cells, BiTEs, and immune checkpoint inhibitors, are being tested in clinical trials to prolong remission and improve the overall survival of AML patients. However, early reports show only limited benefits of these interventions and only in a subset of patients, showing the need for better patient stratification based on immunological markers. We have therefore developed and optimized a 30-color panel for evaluation of effector immune cell (NK cells, γδ T cells, NKT-like T cells, and classical T cells) infiltration into the bone marrow and analysis of their phenotype with regard to their differentiation, expression of inhibitory (PD-1, TIGIT, Tim3, NKG2A) and activating receptors (DNAM-1, NKG2D). We also evaluate the immune evasive phenotype of CD33+ myeloid cells, CD34+CD38-, and CD34+CD38+ hematopoietic stem and progenitor cells by analyzing the expression of inhibitory ligands such as PD-L1, CD112, CD155, and CD200. Our panel can be a valuable tool for patient stratification in clinical trials and can also be used to broaden our understanding of check-point inhibitory networks in AML.
- Klíčová slova
- AML, NK cells, T cells, bone marrow, checkpoint inhibitors, high‐dimensional flow cytometry, immune checkpoint, immunotherapy, inhibitory ligands, leukemic stem cells,
- MeSH
- akutní myeloidní leukemie * imunologie patologie MeSH
- buňky NK imunologie MeSH
- kostní dřeň * patologie imunologie MeSH
- lidé MeSH
- průtoková cytometrie metody MeSH
- T-lymfocyty imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The most commonly used flow cytometric (FCM) analysis of cellular DNA content relies on ethanol fixation followed by RNA digestion and propidium iodide (PI) intercalation into double-stranded DNA. This is a laborious and time-consuming procedure that is subject to systematic errors due to centrifugation and washing steps associated with sample preparation. It can adversely affect the reliability of the results. Here, we present a modified concept of DNA quantification in adherent cell lines by FCM that involves neither ethanol fixation nor any washing and cell transferring steps. Our high throughput assay of adherent cell lines reduces sample-processing time, requires minimal workload, provides a possibility for automation, and, if needed, also allows a significant reduction in the size of individual samples. Working with a well-proven commercial tool-The BD Cycletest™ Plus DNA Reagent Kit-primarily designed for cell cycle analysis and aneuploidy determination in experimental and clinical samples, we suggest a novel, very efficient, and robust approach for DNA research in adherent cell cultures.
- MeSH
- aneuploidie MeSH
- automatizace MeSH
- buněčná adheze MeSH
- buněčný cyklus genetika MeSH
- DNA * analýza MeSH
- lidé MeSH
- průtoková cytometrie * metody MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
Lysosomes are the terminal end of catabolic pathways in the cell, as well as signaling centers performing important functions such as the recycling of macromolecules, organelles, and nutrient adaptation. The importance of lysosomes in human health is supported by the fact that the deficiency of most lysosomal genes causes monogenic diseases called as a group Lysosomal Storage Diseases (LSDs). A common phenotypic hallmark of LSDs is the expansion of the lysosomal compartment that can be detected by using conventional imaging methods based on immunofluorescence protocols or overexpression of tagged lysosomal proteins. These methods require the alteration of the cellular architecture (i.e., due to fixation methods), can alter the behavior of cells (i.e., by the overexpression of proteins), and require sample preparation and the accurate selection of compatible fluorescent markers in relation to the type of analysis, therefore limiting the possibility of characterizing cellular status with simplicity. Therefore, a quantitative and label-free methodology, such as Quantitative Phase Imaging through Digital Holographic (QPI-DH), for the microscopic imaging of lysosomes in health and disease conditions may represent an important advance to study and effectively diagnose the presence of lysosomal storage in human disease. Here we proof the effectiveness of the QPI-DH method in accomplishing the detection of the lysosomal compartment using mouse embryonic fibroblasts (MEFs) derived from a Mucopolysaccharidosis type III-A (MSP-IIIA) mouse model, and comparing them with wild-type (WT) MEFs. We found that it is possible to identify label-free biomarkers able to supply a first pre-screening of the two populations, thus showing that QPI-DH can be a suitable candidate to surpass fluorescent drawbacks in the detection of lysosomes dysfunction. An appropriate numerical procedure was developed for detecting and evaluate such cellular substructures from in vitro cells cultures. Results reported in this study are encouraging about the further development of the proposed QPI-DH approach for such type of investigations about LSDs.
- Klíčová slova
- digital holography, intracellular specificity, label‐free imaging, lysosomal storage diseases, lysosomes, quantitative phase imaging,
- MeSH
- fibroblasty metabolismus patologie MeSH
- kvantitativní fázové zobrazování MeSH
- lidé MeSH
- lyzozomální nemoci z ukládání metabolismus patologie genetika diagnóza MeSH
- lyzozomy * metabolismus MeSH
- mukopolysacharidóza III metabolismus patologie genetika MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
T-lineage acute lymphoblastic leukemia (T-ALL) accounts for about 15% of pediatric and about 25% of adult ALL cases. Minimal/measurable residual disease (MRD) assessed by flow cytometry (FCM) is an important prognostic indicator for risk stratification. In order to assess the MRD a limited number of antibodies directed against the most discriminative antigens must be selected. We propose a pipeline for evaluating the influence of different markers for cell population classification in FCM data. We use linear support vector machine, fitted to each sample individually to avoid issues with patient and laboratory variations. The best separating hyperplane direction as well as the influence of omitting specific markers is considered. Ninety-one bone marrow samples of 43 pediatric T-ALL patients from five reference laboratories were analyzed by FCM regarding marker importance for blast cell identification using combinations of eight different markers. For all laboratories, CD48 and CD99 were among the top three markers with strongest contribution to the optimal hyperplane, measured by median separating hyperplane coefficient size for all samples per center and time point (diagnosis, Day 15, Day 33). Based on the available limited set tested (CD3, CD4, CD5, CD7, CD8, CD45, CD48, CD99), our findings prove that CD48 and CD99 are useful markers for MRD monitoring in T-ALL. The proposed pipeline can be applied for evaluation of other marker combinations in the future.
- Klíčová slova
- CD48, CD99, T-lineage acute lymphoblastic leukemia, feature importance, flow cytometry, minimal residual disease, support vector machine,
- MeSH
- akutní lymfatická leukemie * diagnóza MeSH
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- lymfoblastická leukemie-lymfom z prekurzorových T-buněk * diagnóza MeSH
- průtoková cytometrie MeSH
- reziduální nádor diagnóza MeSH
- T-lymfocyty MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Flow cytometry (FCM) is now the most widely used method to determine ploidy levels and genome size of plants. To get reliable estimates and allow reproducibility of measurements, the methodology should be standardized and follow the best practices in the field. In this article, we discuss instrument calibration and quality control and various instrument and acquisition settings (parameters, flow rate, number of events, scales, use of discriminators, peak positions). These settings must be decided before measurements because they determine the amount and quality of the data and thus influence all downstream analyses. We describe the two main approaches to raw data analysis (gating and histogram modeling), and we discuss their advantages and disadvantages. Finally, we provide a summary of best practice recommendations for data acquisition and raw data analysis in plant FCM.
- Klíčová slova
- best practices, calibration, flow cytometry, gating, histogram modeling, instrument settings, plant sciences,
- MeSH
- délka genomu MeSH
- kalibrace MeSH
- ploidie * MeSH
- průtoková cytometrie metody MeSH
- reprodukovatelnost výsledků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Live cells act as biological lenses and can be employed as real-world optical components in bio-hybrid systems. Imaging at nanoscale, optical tweezers, lithography and also photonic waveguiding are some of the already proven functionalities, boosted by the advantage that cells are fully biocompatible for intra-body applications. So far, various cell types have been studied for this purpose, such as red blood cells, bacterial cells, stem cells and yeast cells. White Blood Cells (WBCs) play a very important role in the regulation of the human body activities and are usually monitored for assessing its health. WBCs can be considered bio-lenses but, to the best of our knowledge, characterization of their optical properties have not been investigated yet. Here, we report for the first time an accurate study of two model classes of WBCs (i.e., monocytes and lymphocytes) by means of a digital holographic microscope coupled with a microfluidic system, assuming WBCs bio-lens characteristics. Thus, quantitative phase maps for many WBCs have been retrieved in flow-cytometry (FC) by achieving a significant statistical analysis to prove the enhancement in differentiation among sphere-like bio-lenses according to their sizes (i.e., diameter d) exploiting intensity parameters of the modulated light in proximity of the cell optical axis. We show that the measure of the low intensity area (S: I z < I th z ) in a fixed plane, is a feasible parameter for cell clustering, while achieving robustness against experimental misalignments and allowing to adjust the measurement sensitivity in post-processing. 2D scatterplots of the identified parameters (d-S) show better differentiation respect to the 1D case. The results show that the optical focusing properties of WBCs allow the clustering of the two populations by means of a mere morphological analysis, thus leading to the new concept of cell-optical-fingerprint avoiding fluorescent dyes. This perspective can open new routes in biomedical sciences, such as the chance to find optical-biomarkers at single cell level for label-free diagnosis.
- Klíčová slova
- biolens, digital holographic cytometry, microfluidics, opto-biology, white blood cells,
- MeSH
- holografie * metody MeSH
- lidé MeSH
- lymfocyty MeSH
- mikroskopie * metody MeSH
- monocyty MeSH
- optika a fotonika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Assays based on Förster resonance energy transfer (FRET) can be used to study many processes in cell biology. Although this is most often done with microscopy for fluorescence detection, we report two ways to measure FRET in living cells by flow cytometry. Using a conventional flow cytometer and the "3-cube method" for intensity-based calculation of FRET efficiency, we measured the enzymatic activity of specific kinases in cells expressing a genetically-encoded reporter. For both AKT and protein kinase A, the method measured kinase activity in time-course, dose-response, and kinetic assays. Using the Cytek Aurora spectral flow cytometer, which applies linear unmixing to emission measured in multiple wavelength ranges, FRET from the same reporters was measured with greater single-cell precision, in real time and in the presence of other fluorophores. Results from gene-knockout studies suggested that spectral flow cytometry might enable the sorting of cells on the basis of FRET. The methods we present provide convenient and flexible options for using FRET with flow cytometry in studies of cell biology.
- Klíčová slova
- FRET, cell-based reporter assay, flow cytometry, kinase assay, protein kinase A, protein kinase B/AKT, spectral flow cytometry,
- MeSH
- luminescentní proteiny genetika metabolismus MeSH
- proteinkinasy závislé na cyklickém AMP metabolismus MeSH
- protoonkogenní proteiny c-akt * metabolismus MeSH
- průtoková cytometrie metody MeSH
- rezonanční přenos fluorescenční energie * metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- luminescentní proteiny MeSH
- proteinkinasy závislé na cyklickém AMP MeSH
- protoonkogenní proteiny c-akt * MeSH
In theory, any plant tissue providing intact nuclei in sufficient quantity is suitable for nuclear DNA content estimation using flow cytometry (FCM). While this certainly opens a wide variety of possible applications of FCM, especially when compared to classical karyological techniques restricted to tissues with active cell division, tissue selection and quality may directly affect the precision (and sometimes even reliability) of FCM measurements. It is usually convenient to first consider the goals of the study to either aim for the highest possible accuracy of estimates (e.g., for inferring genome size, detecting homoploid intraspecific genome size variation, aneuploidy, among others), or to decide that histograms of reasonable resolution provide sufficient information (e.g., ploidy level screening within a single model species). Here, a set of best practices guidelines for selecting the optimal plant tissue for FCM analysis, sampling of material, and material preservation and storage are provided. In addition, factors potentially compromising the quality of FCM estimates of nuclear DNA content and data interpretation are discussed.
- Klíčová slova
- Best practices, flow cytometry, nuclear DNA content, nuclear suspensions, plant material collection, plant material preservation, plant material storage, plant sciences, tissue selection,
- MeSH
- buněčné jádro * chemie genetika MeSH
- DNA nádorová analýza MeSH
- DNA rostlinná genetika MeSH
- ploidie * MeSH
- průtoková cytometrie metody MeSH
- reprodukovatelnost výsledků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA nádorová MeSH
- DNA rostlinná MeSH
- MeSH
- průtoková cytometrie * MeSH
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
Instrumentation for flow cytometry and sorting is designed around the assumption that samples are single-cell suspensions. However, with few exceptions, higher plants comprise complex multicellular tissues and organs, in which the individual cells are held together by shared cell walls. Single-cell suspensions can be obtained through digestion of the cells walls and release of the so-called protoplasts (plants without their cell wall). Here we describe best practices for protoplast preparation, and for analysis through flow cytometry and cell sorting. Finally, the numerous downstream applications involving sorted protoplasts are discussed.
- Klíčová slova
- autofluorescence, best practices, plant flow cytometry and sorting, protoplasts, viability and integrity,
- MeSH
- protoplasty * MeSH
- průtoková cytometrie MeSH
- separace buněk MeSH
- suspenze MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- suspenze MeSH