Iceberg lettuce is one of the most consumed leafy vegetables, which is often treated by different pesticides against pests and diseases. The aim of this study was to describe the fate of 25 pesticides (16 fungicides, 7 insecticides and 2 herbicides) based on quantitative analysis of the parent compounds and targeted screening of their (bio)transformation products. Mathematical models describing a decrease in pesticide residue levels were proposed for 24 pesticides using a first-order kinetic equation. These models provide the data needed to predict consumer exposure associated with the consumption of conventionally grown iceberg lettuce. At harvest, concentrations of most pesticides were dropped under the established EU maximum residue levels, except for flonicamid, fluazifop and pyriproxyfen. A total of 113 pesticide metabolites and degradation products were detected and tentatively identified in extracts prepared by an optimized extraction procedure, i.e., the acidified QuEChERS method. Several products of reactions such as hydrolysis, dealkylation, dehalogenation and/or oxidation-reduction, originated either from various physicochemical processes, or within Phase I pesticide metabolism were detected. Additionally, numerous conjugates with hexose, malonic acid or acetic acid formed during PhaseII of pesticide metabolism were found. In this way, a deeper understanding of specific pesticide degradation mechanisms is facilitated. In addition, it is easier to track the history of pesticide treatment.
- Klíčová slova
- Iceberg lettuce, LC-MS, Pesticide (bio)transformation products, Pesticide dissipation, QuEChERS, Targeted screening,
- MeSH
- herbicidy analýza MeSH
- kinetika MeSH
- kontaminace potravin * analýza MeSH
- rezidua pesticidů * analýza MeSH
- salát (hlávkový) * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- herbicidy MeSH
- rezidua pesticidů * MeSH
Food proteins and their peptides play a significant role in the important biological processes and physiological functions of the body. The peptides show diverse biological benefits ranging from anticancer to antihypertensive, anti-obesity, and immunomodulatory, among others. In this review, an overview of food protein digestion in the gastrointestinal tract and the mechanisms involved was presented. As some proteins remain resistant and undigested, the multifarious factors (e.g. protein type and structure, microbial composition, pH levels and redox potential, host factors, etc.) affecting their colonic fermentation, the derived peptides, and amino acids that evade intestinal digestion are thus considered. The section that follows focuses on the mechanisms of the peptides with anticancer, antihypertensive, anti-obesity, and immunomodulatory effects. As further considerations were made, it is concluded that clinical studies targeting a clear understanding of the gastrointestinal stability, bioavailability, and safety of food-based peptides are still warranted.
- Klíčová slova
- Bioactive peptides, Food proteins, Food-based peptides, Gastrointestinal digestion, Mechanisms,
- MeSH
- antihypertenziva * farmakologie MeSH
- antitumorózní látky * farmakologie MeSH
- biologická dostupnost MeSH
- dietní proteiny * metabolismus MeSH
- gastrointestinální trakt metabolismus MeSH
- imunologické faktory farmakologie MeSH
- imunomodulační látky farmakologie MeSH
- látky proti obezitě * farmakologie MeSH
- lidé MeSH
- peptidy * farmakologie MeSH
- střevní mikroflóra účinky léků MeSH
- trávení * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antihypertenziva * MeSH
- antitumorózní látky * MeSH
- dietní proteiny * MeSH
- imunologické faktory MeSH
- imunomodulační látky MeSH
- látky proti obezitě * MeSH
- peptidy * MeSH
Phytocannabinoids occurring in Cannabis Sativa L. are unique secondary metabolites possessing interesting pharmacological activities. In this study, the dynamics of thermally induced (60 and 120 °C) phytocannabinoid reactions in four cannabis varieties were investigated. Using UHPLC-HRMS/MS, 40 phytocannabinoids were involved in target analysis, and an additional 281 compounds with cannabinoid-like structures and 258 non-cannabinoid bioactive compounds were subjected to suspect screening. As expected, the key reaction was the decarboxylation of acidic phytocannabinoids. Nevertheless, the rate constants differed among cannabis varieties, documenting the matrix-dependence of this process. Besides neutral counterparts of acidic species, ́neẃ bioactive compounds such as hydroxyquinones were found in heated samples. In addition, changes in other bioactive compounds with both cannabinoid-like and non-cannabinoid structures were documented during cannabis heating at 120 °C. The data document the complexity of heat-induced processes and provide a further understanding of changes in bioactivities occurring under such conditions.
- Klíčová slova
- Bioactive compounds, Cannabinoid hydroxyquinones, Cannabis, Decarboxylation, Hemp, Phytocannabinoids, Suspect screening, UHPLC-HRMS/MS,
- MeSH
- Cannabis * chemie metabolismus MeSH
- fytonutrienty * analýza chemie metabolismus MeSH
- inflorescentia * chemie metabolismus MeSH
- kanabinoidy * analýza chemie metabolismus MeSH
- kapalinová chromatografie-hmotnostní spektrometrie metody MeSH
- sekundární metabolismus MeSH
- vysoká teplota * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fytonutrienty * MeSH
- kanabinoidy * MeSH
Pigmented wheat varieties (Triticum aestivum spp.) are getting increasingly popular in modern nutrition and thoroughly researched for their functional and nutraceutical value. The colour of these wheat grains is caused by the expression of natural pigments, including carotenoids and anthocyanins, that can be restricted to either the endosperm, pericarp and/or aleurone layers. While contrasts in phytochemical synthesis give rise to variations among purple, blue, dark and yellow grain's antioxidant and radical scavenging capacities, little is known about their influence on gluten proteins expression, digestibility and immunogenic potential in a Celiac Disease (CD) framework. Herein, it has been found that the expression profile and immunogenic properties of gliadin proteins in pigmented wheat grains might be affected by anthocyanins and carotenoids upregulation, and that the spectra of peptide released upon simulated gastrointestinal digestion is also significantly different. Interestingly, anthocyanin accumulation, as opposed to carotenoids, correlated with a lower immunogenicity and toxicity of gliadins at both protein and peptide levels. Altogether, this study provides first-level evidence on the impact modern breeding practices, seeking higher expression levels of health promoting phytochemicals at the grain level, may have on wheat crops functionality and CD tolerability.
- Klíčová slova
- Data-dependent acquisition, Gluten, Pigmented wheat, Protein expression profiling,
- MeSH
- anthokyaniny MeSH
- celiakie * MeSH
- gliadin * chemie MeSH
- hmotnostní spektrometrie MeSH
- karotenoidy MeSH
- lidé MeSH
- peptidy chemie MeSH
- pšenice chemie MeSH
- šlechtění rostlin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anthokyaniny MeSH
- gliadin * MeSH
- karotenoidy MeSH
- peptidy MeSH
The aim of this study was to investigate batch-to-batch inconsistencies in the processing of pig and fish collagen isolates processed using two protocols that differed in terms of the acetic acid concentrations applied and the pre- and post-extraction steps, and which were previously tested in our laboratory with the intention of preserving the biological structures and functions of the collagen isolates for biomedical purposes. Both the major and minor components such as the amino acids, lipids, water, glycosaminoglycan and ash contents and elemental content, as well as the structure and morphology of the raw sources and the resulting batches of isolates were subsequently examined in detail applying standardized analytical methods including high perfomance liquid chromatography, ultraviolet-visible and infrared spectrometry, polyacrylamide gel electrophoresis, energy dispersive spectroscopy and scanning electron microscopy. All the fish isolates provided severalfold higher yields (8-45 wt%) than did the pig isolates (3-9 wt%). In addition, the variability of the fish isolate yields (the coefficient of variation for processing A: 16.4-32.9 % and B: 6.8-17.4 %) was significantly lower (p ≤ 0.05, n = 5) than that of the pig isolates (A: 27.7-69.8 %; B: 35.3-87.9 %). In general, the fish skin batches had significantly higher protein contents (˃60 wt%) and lower lipid contents (<10 wt%) than the pig skin batches (<55 wt% protein and up to 66 wt% lipid). In addition, the fish skin batches did not differ significantly in terms of their composition applying the same processing method, whereas the pig skin batches exhibited considerable variations in terms of their compositions, particularly regarding the protein and lipid contents. It can be stated that, concerning the fish isolates, processing B was, in most cases, slightly more efficient and reproducible than processing A. However, concerning the pig isolates, although processing A appeared to be more efficient than processing B in terms of the yield, it resulted in the production of isolates that contained a certain level of contaminants. The study provides a comprehensive discussion on the suitability of the processing protocol in terms of producing batches of reproducible quality according to the specific type of biomaterial processed from different animal species.
- Klíčová slova
- Batch variability, Characterization, Collagen, Green processing, Pig and fish skin, Waste treatment,
- MeSH
- kolagen * MeSH
- lipidy MeSH
- prasata MeSH
- ryby * MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kolagen * MeSH
- lipidy MeSH
Hop is widely used in beer brewing and as a medicinal product. The present study comprehensively analyzed the main molecular determinants of the antibacterial activity of hop extracts. Minimum inhibitory concentrations (MIC) against Bacillus subtilis between 31.25 and 250 µg/mL were found in the ethanolic extracts of five hop varieties for beer brewing, but not in the tea hop sample. Activity-guided fractionation revealed the highest antibacterial activity for lupulone and adlupulone (MIC 0.98 µg/mL). Metabolome profiling and subsequent multistep statistical analysis detected 33 metabolites out of 1826 features to be associated with the antibacterial activity including humulone, adhumulone, colupulone, lupulone, and adlupulone. Xanthohumol, the three humulone- and three lupulone congeners were quantified in the hop extracts by a validated ultrahigh-performance liquid chromatography-mass spectrometry method. Considering concentrations and MICs, colupulone and lupulone were identified as major contributors to the antibacterial activity of hop extract with the highest antibacterial activity values (concentration/MIC) of 1.59 and 2.56.
- Klíčová slova
- Antibacterial activity, Hop, Humulone, Humulus lupulus, Lupulone, Metabolome, Quantification,
- MeSH
- antibakteriální látky * farmakologie MeSH
- metabolom * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky * MeSH
- colupulone MeSH Prohlížeč
- humulon MeSH Prohlížeč
- lupulon MeSH Prohlížeč
Bioactive peptides (BPs) generated from food proteins can serve therapeutic purposes against degenerative and cardiovascular diseases such as inflammation, diabetes, and cancer. There are numerous reports on the in vitro, animal, and human studies of BPs, but not as much information on the stability and bioactivity of these peptides when incorporated in food matrices. The effects of heat and non-heat processing of the food products, and storage on the bioactivity of the BPs, are also lacking. To this end, we describe the production of BPs in this review, followed by the food processing conditions that affect their storage bioactivity in the food matrices. As this area of research is open for industrial innovation, we conclude that novel analytical methods targeting the interactions of BPs with other components in food matrices would be greatly significant while elucidating their overall bioactivity before, during and after processing.
- Klíčová slova
- ACE, Bioactive peptides, Bioactivity, Cancer, DPP-IV, Maillard,
- MeSH
- lidé MeSH
- manipulace s potravinami MeSH
- peptidy * farmakologie MeSH
- potraviny * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- peptidy * MeSH
The genetic variant A2 β-casein integrates the casein protein group in milk and has been often associated with positive health outcomes. Therefore, this review explores the present understanding of A2 β-casein, including detection methods and the market trends for dairy from A2 milk. Also, the interaction of A2 β-casein with αs1-casein and κ-casein genotypes was examined in terms of technological impacts on A2 milk. A limited number of preliminary studies has aimed to investigate the sensorial and technological impacts of β-casein variants in milk matrices, for instance, in yogurt and other derivatives. Nevertheless, considering studies carried out so far, it is concluded that the manufacture of dairy products from A2 milk is perfectly feasible, as the products presented slight differences when compared to those derived from traditional milk. In one of the works, sensitive drops in rennet coagulation time and curd firmness values were observed in cheese traits. However, it is relevant to point out that variant A of κ-casein plays a negative role in the coagulation features of milk. Therefore, alterations in the pattern of cheese-making properties are not uniquely related to β-casein variants. Attempts to produce A2 β-casein in laboratory (non-natural source), through biosynthesis, for example, have not been found so far. This knowledge gap offers a promising area for future studies concerning proteins and bioactive peptide production.
- Klíčová slova
- A2 milk, A2 milk commercialization, β-casein detection, β-casein quantification,
- MeSH
- fenotyp MeSH
- genotyp MeSH
- kaseiny analýza MeSH
- mléko * chemie MeSH
- skot MeSH
- sýr * MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kaseiny MeSH
Blood sausages consisting of groats, pork, porcine offal, fat, blood, and spices are very popular in the Czech Republic. All these ingredients are potential sources of dietary exposure to ochratoxin A (OTA). OTA has a strong affinity to serum proteins in porcine blood. Thus, the contamination of blood sausages with OTA can be expected. This study aims to evaluate OTA in 200 samples of porcine blood sausages purchased at the Czech market during 2020-2021. The analytical method high-performance liquid chromatography coupled with fluorescence detection with pre-treatment using immunoaffinity columns was employed to determine OTA. The limit of detection was 0.03 ng/g and the limit of quantification 0.10 ng/g. Recovery was 71.6 %. All samples were positive at contents ranging from 0.15 to 5.68 ng/g with a mean of 1.47 ng/g, and a median of 1.26 ng/g. A total of 66% of these samples contained OTA content exceeding the maximum limit of 1 ng/g set in Italy. This study demonstrates that the Czech population is exposed to OTA from blood sausages. The proposed preliminary action limit for OTA in blood sausages should be set at 1 ng/g. No regulatory limits for OTA in blood sausages have been established yet in the European Union legislation. To protect human health, further monitoring of OTA in these products is necessary.
- Klíčová slova
- Animal product, Czech market, Mycotoxin contamination, Nephrotoxin, Porcine blood, Risk assessment,
- MeSH
- kontaminace potravin analýza MeSH
- masné výrobky * analýza MeSH
- ochratoxiny * analýza MeSH
- prasata MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- ochratoxin A MeSH Prohlížeč
- ochratoxiny * MeSH
- Publikační typ
- tisková chyba MeSH