Evolution
Dotaz
Zobrazit nápovědu
BACKGROUND: Gene duplication has led to a most remarkable adaptation involved in vertebrates' host-pathogen arms-race, the major histocompatibility complex (MHC). However, MHC duplication history is as yet poorly understood in non-mammalian vertebrates, including birds. RESULTS: Here, we provide evidence for the evolution of two ancient avian MHC class IIB (MHCIIB) lineages by a duplication event prior to the radiation of all extant birds >100 million years ago, and document the role of concerted evolution in eroding the footprints of the avian MHCIIB duplication history. CONCLUSIONS: Our results suggest that eroded footprints of gene duplication histories may mimic birth-death evolution and that in the avian MHC the presence of the two lineages may have been masked by elevated rates of concerted evolution in several taxa. Through the presence of a range of intermediate evolutionary stages along the homogenizing process of concerted evolution, the avian MHCIIB provides a remarkable illustration of the erosion of multigene family duplication history.
- Klíčová slova
- Birds, Birth-death evolution, Concerted evolution, Gene conversion, Gene duplication, Major histocompatibility complex, Recombination,
- MeSH
- duplikace genu MeSH
- geny MHC třídy II genetika MeSH
- molekulární evoluce * MeSH
- multigenová rodina genetika MeSH
- ptáci genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dinoflagellates are diverse and ecologically important protists characterized by many morphological and molecular traits that set them apart from other eukaryotes. These features include, but are not limited to, massive genomes organized using bacterially-derived histone-like proteins (HLPs) and dinoflagellate viral nucleoproteins (DVNP) rather than histones, and a complex history of photobiology with many independent losses of photosynthesis, numerous cases of serial secondary and tertiary plastid gains, and the presence of horizontally acquired bacterial rhodopsins and type II RuBisCo. Elucidating how this all evolved depends on knowing the phylogenetic relationships between dinoflagellate lineages. Half of these species are heterotrophic, but existing molecular data is strongly biased toward the photosynthetic dinoflagellates due to their amenability to cultivation and prevalence in culture collections. These biases make it impossible to interpret the evolution of photosynthesis, but may also affect phylogenetic inferences that impact our understanding of character evolution. Here, we address this problem by isolating individual cells from the Salish Sea and using single cell, culture-free transcriptomics to expand molecular data for dinoflagellates to include 27 more heterotrophic taxa, resulting in a roughly balanced representation. Using these data, we performed a comprehensive search for proteins involved in chromatin packaging, plastid function, and photoactivity across all dinoflagellates. These searches reveal that 1) photosynthesis was lost at least 21 times, 2) two known types of HLP were horizontally acquired around the same time rather than sequentially as previously thought; 3) multiple rhodopsins are present across the dinoflagellates, acquired multiple times from different donors; 4) kleptoplastic species have nucleus-encoded genes for proteins targeted to their temporary plastids and they are derived from multiple lineages, and 5) warnowiids are the only heterotrophs that retain a whole photosystem, although some photosynthesis-related electron transport genes are widely retained in heterotrophs, likely as part of the iron-sulfur cluster pathway that persists in non-photosynthetic plastids.
- Klíčová slova
- Character evolution, Dinoflagellates, Phylogenomics, Single cell transcriptomics,
- MeSH
- biologická evoluce MeSH
- Dinoflagellata * genetika klasifikace MeSH
- fotosyntéza * genetika MeSH
- fylogeneze * MeSH
- heterotrofní procesy genetika MeSH
- molekulární evoluce MeSH
- plastidy genetika MeSH
- Publikační typ
- časopisecké články MeSH
Chromosome numbers have been widely used to describe the most fundamental genomic attribute of an organism or a lineage. Although providing strong phylogenetic signal, chromosome numbers vary remarkably among eukaryotes at all levels of taxonomic resolution. Changes in chromosome numbers regularly serve as indication of major genomic events, most notably polyploidy and dysploidy. Here, we review recent advancements in our ability to make inferences regarding historical events that led to alterations in the number of chromosomes of a lineage. We first describe the mechanistic processes underlying changes in chromosome numbers, focusing on structural chromosomal rearrangements. Then, we focus on experimental procedures, encompassing comparative cytogenomics and genomics approaches, and on computational methodologies that are based on explicit models of chromosome-number evolution. Together, these tools offer valuable predictions regarding historical events that have changed chromosome numbers and genome structures, as well as their phylogenetic and temporal placements.
- Klíčová slova
- chromosome numbers, cytogenomics, dysploidy, genome evolution, phylogenetic models, polyploidy,
- MeSH
- chromozomy rostlin * MeSH
- genom rostlinný MeSH
- genomika MeSH
- malování chromozomů MeSH
- modely genetické * MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The discovery of a universal genetic code utilized by all existing organisms became the backbone of biology. The coding capacity underwent changes during evolution, but its main fluctuation results from its different reading and regulation. The genetic code thus represents a sort of receptacle of living organism evolution. In this article, we propose an analogy between the genetic code and a broader Platonic hypodoché, a concept that Alfred North Whitehead used to explain various aspects of science.
- Klíčová slova
- Platonic receptacle, Whitehead’s argument, evolution changes, genetic code, present day genetics, realization of ideas,
- MeSH
- biologické modely * MeSH
- genetický kód * MeSH
- molekulární evoluce * MeSH
- Publikační typ
- časopisecké články MeSH
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
- Klíčová slova
- MHC, adaptation, adaptive immunity, evolutionary immunology, genomics, host-parasite interactions, immunogenetics, innate immunity, molecular evolution, vertebrates,
- MeSH
- adaptivní imunita * genetika MeSH
- biologická evoluce * MeSH
- molekulární evoluce MeSH
- obratlovci genetika MeSH
- přirozená imunita genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
The plant genus Silene has become a model for evolutionary studies of sex chromosomes and sex-determining mechanisms. A recent study performed in Silene colpophylla showed that dioecy and the sex chromosomes in this species evolved independently from those in Silene latifolia, the most widely studied dioecious Silene species. The results of this study show that the sex-determining system in Silene otites, a species related to S. colpophylla, is based on female heterogamety, a sex determination system that is unique among the Silene species studied to date. Our phylogenetic data support the placing of S. otites and S. colpophylla in the subsection Otites and the analysis of ancestral states suggests that the most recent common ancestor of S. otites and S. colpophylla was most probably dioecious. These observations imply that a switch from XX/XY sex determination to a ZZ/ZW system (or vice versa) occurred in the subsection Otites. This is the first report of two different types of heterogamety within one plant genus of this mostly nondioecious plant family.
- Klíčová slova
- Evolution, XY, ZW, sex chromosomes, sex determination,
- MeSH
- chromozomy rostlin genetika MeSH
- genetická variace MeSH
- kvantitativní znak dědičný MeSH
- molekulární evoluce * MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví genetika MeSH
- pyl genetika MeSH
- sexuální faktory MeSH
- Silene anatomie a histologie genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During their radiation, certain groups of animals evolved significant phenotypic disparity (morphological diversity), enabling them to thrive in diverse environments. Adaptations to the same type of environment can lead to convergent evolution in function and morphology. However, well-documented examples in repeated adaptations of teleost fishes to different habitats, which are not primarily related to trophic specialization, are still scarce. Gobies are a remarkable fish group, exhibiting a great species diversity, morphological variability, and extraordinary ability to colonize very different environments. A variety of lifestyles and body forms evolved also in European lineages of gobies. We conducted two-dimensional geometric morphometric and phylomorphospace analyses in European lineages of gobies and evaluated the extent of convergent evolution in shape associated with adaptation to various habitats. Our analyses revealed the change in shape along the nektonic-cryptobenthic axis, from very slender head and body to stout body and wide head. We showed convergent evolution related to mode of locomotion in the given habitat in four ecological groups: nektonic, hyperbenthic, cryptobenthic, and freshwater gobies. Gobies, therefore, emerge as a highly diversified lineage with unique lifestyle variations, offering invaluable insights into filling of ecomorphological space and mechanisms of adaptation to various aquatic environments with distinct locomotion requirements.
- Klíčová slova
- Gobiiformes, convergent evolution, geometric morphometry, molecular dating, teleosts,
- MeSH
- biologická evoluce * MeSH
- ekosystém MeSH
- fenotyp MeSH
- fylogeneze MeSH
- Perciformes * anatomie a histologie genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. RESULTS: We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. CONCLUSIONS: The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.
- Klíčová slova
- Comparative genomics, Diplonemea, Euglenida, Evolution, Kinetochores, Kinetoplastea, Metabolism, Trypanothione,
- MeSH
- biologická evoluce * MeSH
- Euglenida genetika metabolismus MeSH
- Euglenozoa genetika metabolismus MeSH
- genom protozoální * MeSH
- Kinetoplastida genetika metabolismus MeSH
- molekulární evoluce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The microtubular cytoskeleton of most single-celled eukaryotes radiates from an organizing center called the flagellar apparatus, which is essential for locomotion, feeding and reproduction. The structure of the flagellar apparatus tends to be conserved within diverse clades of eukaryotes, and modifications of this overall structure distinguish different clades from each other. Understanding the unity and diversity of the flagellar apparatus provides important insights into the evolutionary history of the eukaryotic cell. Diversification of the flagellar apparatus is particularly apparent during the multiple independent transitions to parasitic lifestyles from free-living ancestors. However, our understanding of these evolutionary transitions is hampered by the lack of detailed comparisons of the microtubular root systems in different lineages of parasitic microbial eukaryotes and those of their closest free-living relatives. Here we help to establish this comparative context by examining the unity and diversity of the flagellar apparatus in six major clades containing both free-living lineages and endobiotic (parasitic and symbiotic) microbial eukaryotes: stramenopiles (e.g., Phytophthora), fornicates (e.g., Giardia), parabasalids (e.g., Trichomonas), preaxostylids (e.g., Monocercomonoides), kinetoplastids (e.g., Trypanosoma), and apicomplexans (e.g., Plasmodium). These comparisons enabled us to address some broader patterns associated with the evolution of parasitism, including a general trend toward a more streamlined flagellar apparatus.
- Klíčová slova
- Biodiversity, Cytoskeleton, Evolution, Free-living, MTOC, Microtubules,
- MeSH
- biologická evoluce * MeSH
- cytoskelet metabolismus MeSH
- flagella metabolismus ultrastruktura MeSH
- lokomoce MeSH
- mikrotubuly metabolismus MeSH
- molekulární evoluce MeSH
- paraziti klasifikace fyziologie MeSH
- rozmnožování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Diseases caused by pathogens contribute to molecular adaptations in host immunity. Variety of viral pathogens challenging animal immunity can drive positive selection diversifying receptors recognising the infections. However, whether distinct virus sensing systems differ across animals in their evolutionary modes remains unclear. Our review provides a comparative overview of natural selection shaping molecular evolution in vertebrate viral-binding pattern recognition receptors (PRRs). Despite prevailing negative selection arising from the functional constraints, multiple lines of evidence now suggest diversifying selection in the Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs) and oligoadenylate synthetases (OASs). In several cases, location of the positively selected sites in the ligand-binding regions suggests effects on viral detection although experimental support is lacking. Unfortunately, in most other PRR families including the AIM2-like receptor family, C-type lectin receptors (CLRs), and cyclic GMP-AMP synthetase studies characterising their molecular evolution are rare, preventing comparative insight. We indicate shared characteristics of the viral sensor evolution and highlight priorities for future research.
- Klíčová slova
- Evolutionary adaptation, Innate immunity, Molecular evolution, Pattern recognition receptor, Positive selection, Virus detection,
- MeSH
- molekulární evoluce MeSH
- obratlovci MeSH
- přirozená imunita * MeSH
- receptory rozpoznávající vzory * genetika MeSH
- selekce (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- receptory rozpoznávající vzory * MeSH