Organic-inorganic perovskite solar cells (PSCs) are promising candidates as photovoltaic cells. Recently, they have attracted significant attention due to certified power conversion efficiencies exceeding 23%, low-cost engineering, and superior electrical/optical characteristics. These PSCs extensively utilize a perovskite-structured composite with a hybrid of Pb-based nanomaterials. Operation of them may cause the release of Pb-based nanoparticles. However, limited information is available regarding the potential toxicity of Pb-based PSCs on various organisms. This study conducted a battery of in vitro and in vivo toxicity bioassays for three quintessential Pb-based PSCs (CH3NH3PbI3, NHCHNH3PbBr3, and CH3NH3PbBr3) using progressively more complex forms of life. For all species tested, the three different perovskites had comparable toxicities. The viability of Caco-2/TC7 cells was lower than that of A549 cells in response to Pb-based PSC exposure. Concentration-dependent toxicity was observed for the bioluminescent bacterium Vibrio fischeri, for soil bacterial communities, and for the nematode Caenorhabditis elegans. Neither of the tested Pb-based PSCs particles had apparent toxicity to Pseudomonas putida. Among all tested organisms, V. fischeri showed the highest sensitivity with EC50 values (30 min of exposure) ranging from 1.45 to 2.91 mg L-1. Therefore, this study recommends that V. fischeri should be preferably utilized to assess. PSC toxicity due to its increased sensitivity, low costs, and relatively high throughput in a 96-well format, compared with the other tested organisms. These results highlight that the developed assay can easily predict the toxic potency of PSCs. Consequently, this approach has the potential to promote the implementation of the 3Rs (Replacement, Reduction, and Refinement) principle in toxicology and decrease the dependence on animal testing when determining the safety of novel PSCs.
- Klíčová slova
- 3Rs, Dose response, Lead, Perovskite solar cells, Toxicity,
- Publikační typ
- časopisecké články MeSH
Environmental Safety Assessments (ESA) are mandatory for several regulatory purposes and are an important component of stewardship/sustainability initiatives. Fish testing is used for assessing chemical toxicity and bioaccumulation potential; amphibians are included in some jurisdictions and their use is increasing to assess endocrine disruption. Alternative methods are becoming more available, covering the principles of the 3Rs (i.e., replacing, reducing and refining animal tests), but their regulatory incorporation is still limited. A cross-sector review by the European Partnership for Alternative Approaches to Animal Testing (EPAA), discussed the status and priorities for accelerating the adoption of non-animal approaches in ESA. The lack of an internationally agreed definition for "animal testing" was recognized as a challenge. For example, testing with vertebrate embryos up to specific developmental stages is a suitable refinement alternative only in some jurisdictions. Invertebrate testing offers refinement alternatives to develop tiered approaches using vertebrate testing as a last resort. Aquatic ESA was identified as a common need by all sectors and regulatory areas, while terrestrial ESA is particularly relevant for agrochemicals. The standardization and validation of some alternative methods as OECD test guidelines (TGs) for fish acute toxicity and fish bioaccumulation have not yet triggered the expected replacement in regulatory settings. Priority actions in these areas are needed to generate confidence in the regulatory use of the available OECD TGs designed as alternatives, including the identification of applicability domains and guidance/decision-trees for integrating different lines of evidence. Case studies under the OECD Integrated Approaches to Testing and Assessment (IATA) program could facilitate further global regulatory uptake. Replacement of fish chronic toxicity testing is more complex and less advanced. A dual approach was suggested, in the short-term, exploring lines of evidence that, alone or in combination, could identify when further fish testing is not needed. The second phase should focus on the application of the 3Rs in those cases where chronic information is needed. Another area of increasing interest is endocrine disruption. It represents a challenge but also an opportunity for implementing mechanistic non-animal methods, in addition to integrate human and ESA. This requires a step-by-step approach with continuous dialogue to ensure that technical developments will address regulatory needs. The review also agreed that the long-term aspiration is a new ESA paradigm, mapping the protection goals and providing connectivity between the chemical legislation and environmental protection policies.
- Klíčová slova
- 3Rs, Alternative methods, Bioaccumulation, Endocrine disruption, Environmental safety assessment, Fish toxicity,
- MeSH
- alternativy testů na zvířatech * metody MeSH
- hodnocení rizik MeSH
- lidé MeSH
- testy toxicity * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Pre-Pulse Inhibition (PPI) is a neural process where suppression of a startle response is elicited by preceding the startling stimulus (Pulse) with a weak, non-startling one (Pre-Pulse). Defective PPI is widely employed as a behavioural endophenotype in humans and mammalian disorder-relevant models for neuropsychiatric disorders. We have developed a user-friendly, semi-automated, high-throughput-compatible Drosophila light-off jump response PPI paradigm, with which we demonstrate that PPI, with similar parameters measured in mammals, exists in adults of this model organism. We report that Drosophila PPI is affected by reduced expression of Dysbindin and both reduced and increased expression of Nmdar1 (N-methyl-D-aspartate receptor 1), perturbations associated with schizophrenia. Studying the biology of PPI in an organism that offers a plethora of genetic tools and a complex and well characterized connectome will greatly facilitate our efforts to gain deeper insight into the aetiology of human mental disorders, while reducing the need for mammalian models.
- Klíčová slova
- 3Rs, Drosophila, Dysbindin, Nmdar1, Pre-Pulse Inhibition, behaviour system,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Herein, we compare the bulk, 2H and 3R phases of two most prevalent TMD materials: MoS2 and WS2. The 3R phase outperforms its 2H phase counterpart in hydrogen evolution reaction catalysis and is even comparable with the exfoliated, 1T phase in the case of MoS2.
- Publikační typ
- časopisecké články MeSH
Transition metal dichalcogenides (TMDs) are an intriguing family of materials with large application potential in a variety of scientific fields ranging from electronics to electrocatalysis. Within this group of materials, MoS2 has been attracting a lot of scientific attention due to its chemical and physical properties. In this report, we studied the exfoliation of the largely unexplored 3R MoS2 polytype prepared by high-temperature, high-pressure synthesis. Bulk as well as sodium naphthalenide exfoliated materials were studied in terms of their quality and performance for the hydrogen evolution reaction (HER). The HER performance was benchmarked versus the commonly available 2H polytype. The reported results show that the 3R polytype is more suitable for the conversion of MoS2 into the metallic 1T phase, which was attributed to surface oxidation occurring in the 2H polytype. Higher content of the 1T phase then resulted in an overall lower overpotential of -0.25 V vs. RHE for the 3R polytype compared with the overpotential of -0.30 V for the 2H polytype. These results show that the 3R polytype might serve as a better starting point for the synthesis of highly active chemically exfoliated MoS2 catalysts for hydrogen evolution.
- Publikační typ
- časopisecké články MeSH
Public awareness and discussion about animal experiments and replacement methods has greatly increased in recent years. The term 'the Three Rs', which stands for the Replacement, Reduction and Refinement of animal experiments, is inseparably linked in this context. A common goal within the Three Rs scientific community is to develop predictive non-animal models and to better integrate all available data from in vitro, in silico and omics technologies into regulatory decision-making processes regarding, for example, the toxicity of chemicals, drugs or food ingredients. In addition, it is a general concern to implement (human) non-animal methods in basic research. Toward these efforts, there has been an ever-increasing number of Three Rs centres and platforms established over recent years - not only to develop novel methods, but also to disseminate knowledge and help to implement the Three Rs principles in policies and education. The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes gave a strong impetus to the creation of Three Rs initiatives, in the form of centres and platforms. As the first of a series of papers, this article gives an overview of the European Three Rs centres and platforms, and their historical development. The subsequent articles, to be published over the course of ATLA's 50th Anniversary year, will summarise the current focus and tasks as well as the future and the plans of the Three Rs centres and platforms. The Three Rs centres and platforms are very important points of contact and play an immense role in their respective countries as 'on the ground' facilitators of Directive 2010/63/EU. They are also invaluable for the widespread dissemination of information and for promoting implementation of the Three Rs in general.
- Klíčová slova
- 3R, 3Rs, EU3Rnet, NAM, NAMs, new approach methodologies, non-animal methods, novel approach methodologies,
- MeSH
- alternativy testů na zvířatech MeSH
- experimenty na zvířatech * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes has given a major push to the formation of Three Rs initiatives in the form of centres and platforms. These centres and platforms are dedicated to the so-called Three Rs, which are the Replacement, Reduction and Refinement of animal use in experiments. ATLA's 50th Anniversary year has seen the publication of two articles on European Three Rs centres and platforms. The first of these was about the progressive rise in their numbers and about their founding history; this second part focuses on their current status and activities. This article takes a closer look at their financial and organisational structures, describes their Three Rs focus and core activities (dissemination, education, implementation, scientific quality/translatability, ethics), and presents their areas of responsibility and projects in detail. This overview of the work and diverse structures of the Three Rs centres and platforms is not only intended to bring them closer to the reader, but also to provide role models and show examples of how such Three Rs centres and platforms could be made sustainable. The Three Rs centres and platforms are very important focal points and play an immense role as facilitators of Directive 2010/63/EU 'on the ground' in their respective countries. They are also invaluable for the wide dissemination of information and for promoting the implementation of the Three Rs in general.
- Klíčová slova
- 3R, 3Rs, EU3Rnet, NAM, NAMs, new approach methodologies, non-animal methods, novel approach methodologies,
- MeSH
- alternativy výzkumu na zvířatech * MeSH
- laboratorní zvířata * MeSH
- pohoda zvířat * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Evropa MeSH
The queens of advanced social insects maintain their reproductive monopoly by using exocrine chemicals. The chemistry of these "queen pheromones" in termites is poorly known. We show that primary queens of four higher termites from the subfamily Syntermitinae (Embiratermes neotenicus, Silvestritermes heyeri, Labiotermes labralis, and Cyrilliotermes angulariceps) emit significant amounts of the sesquiterpene alcohol (E)-nerolidol. It is the dominant analyte in queen body washes; it is present on the surface of eggs, but absent in kings, workers, and soldiers. In E. neotenicus, it is also produced by replacement neotenic queens, in quantities correlated with their fertility. Using newly synthesised (3R,6E)-nerolidol, we demonstrate that the queens of this species produce only the (R) enantiomer. It is distributed over the surface of their abdomen, in internal tissues, and in the haemolymph, as well as in the headspace of the queens. Both (R) and (S) enantiomers are perceived by the antennae of E. neotenicus workers. The naturally occurring (R) enantiomer elicited a significantly larger antennal response, but it did not show any behavioural effect. In spite of technical difficulties encountered in long-term experiments with the studied species, (3R,6E)-nerolidol remains among eventual candidates for the role in queen fertility signalling.
- Klíčová slova
- (E)-nerolidol, Syntermitinae, fertility signalling, higher termites, social insects,
- MeSH
- feromony chemie metabolismus MeSH
- fertilita MeSH
- Isoptera metabolismus fyziologie MeSH
- komunikace zvířat MeSH
- seskviterpeny chemie metabolismus MeSH
- sociální chování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- feromony MeSH
- nerolidol MeSH Prohlížeč
- seskviterpeny MeSH
Chlorinated paraffins (CPs) are a notoriously known class of compounds that stand amongst the most wide-spread persistent organic pollutants. Therefore, their reliable, repeatable, and reproducible quantitative analysis using well-defined reference standards is of utmost importance. In view of the increasing demand for constitutionally and stereochemically defined CP standards, we have synthesized a stereoisomeric mixture of 3,4,7,8-tetrachlorodecane. One stereoisomer - (3R,4R,7S,8S)-3,4,7,8-tetrachlorodecane was separated from the mixture, and enriched fractions of residual stereoisomers were achieved through crystallisation of the residual mother liquors. The molecular structure of the single isolated stereoisomer was confirmed through single-crystal X-ray crystallographic data. One fraction of 3,4,7,8-tetrachlorodecane stereoisomers was successfully separated on a chiral stationary phase using supercritical fluid chromatography hyphenated to mass spectrometry (column: Chiral ART Amylose-C; mobile phase: CO2/MeOH (96/4 v/v) with 0.1% diethylamine). The reported separation of stereoisomers is unprecedented in CP analysis so far.
- Klíčová slova
- Amylose, Chiral supercritical fluid chromatography, Chlorinated paraffins, Gas chromatography, X-ray diffraction,
- Publikační typ
- časopisecké články MeSH
Olfactory sensitivity to odorant molecules is a complex biological function influenced by both endogenous factors, such as genetic background and physiological state, and exogenous factors, such as environmental conditions. In animals, this vital ability is mediated by olfactory sensory neurons (OSNs), which are distributed across several specialized olfactory subsystems depending on the species. Using the phosphorylation of the ribosomal protein S6 (rpS6) in OSNs following sensory stimulation, we developed an ex vivo assay allowing the simultaneous conditioning and odorant stimulation of different mouse olfactory subsystems, including the main olfactory epithelium, the vomeronasal organ, and the Grueneberg ganglion. This approach enabled us to observe odorant-induced neuronal activity within the different olfactory subsystems and to demonstrate the impact of environmental conditioning, such as temperature variations, on olfactory sensitivity, specifically in the Grueneberg ganglion. We further applied our rpS6-based assay to the human olfactory system and demonstrated its feasibility. Our findings show that analyzing rpS6 signal intensity is a robust and highly reproducible indicator of neuronal activity across various olfactory systems, while avoiding stress and some experimental limitations associated with in vivo exposure. The potential extension of this assay to other conditioning paradigms and olfactory systems, as well as its application to other animal species, including human olfactory diagnostics, is also discussed.
- Klíčová slova
- 3Rs, Grueneberg ganglion, environmental factors, human, mouse, neuronal activity, olfaction, olfactory subsystems, rpS6,
- MeSH
- čich fyziologie MeSH
- čichová sliznice metabolismus MeSH
- čichové buňky * metabolismus fyziologie MeSH
- fosforylace MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- odoranty analýza MeSH
- ribozomální protein S6 * metabolismus MeSH
- vomeronazální orgán metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ribozomální protein S6 * MeSH