Fired cartridge cases are often found at crime scenes connected with a shooting, and their prompt analysis can be very useful for the police investigation. In addition to dactyloscopy (fingerprints) that tends to be more or less damaged on the cartridges and often are not adequate for individual identification, there are also scent traces on the fired cartridges that are not fully destroyed by the gun's being fired. In this pilot study, we compare the human scent remaining on cartridge cases after firing with scent samples from different volunteers to find out who loaded the gun before the gun was shot. In this experiment, a simulated crime scene was prepared, and one of our volunteers loaded the weapon. Analysis of the scent remaining on cartridge cases was carried out using two different methods, namely, olfactronics and olfactorics.
- MeSH
- lidé MeSH
- odoranty * analýza MeSH
- pilotní projekty MeSH
- střelné zbraně MeSH
- zločin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The clinical diagnosis of dermatophytosis and identification of dermatophytes face challenges due to reliance on culture-based methods. Rapid, cost-effective detection techniques for volatile organic compounds (VOCs) have been developed for other microorganisms, but their application to dermatophytes is limited. This study explores using VOCs as diagnostic markers for dermatophytes. We compared VOC profiles across different dermatophyte taxa using solid-phase microextraction (SPME) and advanced analytical methods: gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS). We analyzed 47 dermatophyte strains from 15 taxa grown on sheep wool, including clinically significant species. Additionally, we examined phylogenetic relationships among the strains to correlate genetic relatedness with metabolite production. Our results showed that GC×GC-TOFMS offered superior resolution but similar differentiation of VOC profiles compared to GC-MS. VOC spectra allowed reliable distinction of taxonomic units at the species level and below, however, these distinctions showed only a slight correlation with phylogenetic data. We identified pan-dermatophyte and species- or strain-specific VOC profiles, indicating their potential for rapid, non-invasive detection of dermatophyte infections, including epidemic strains. These patterns could enable future taxa-specific identification. Our study highlights the potential of VOCs as tools for dermatophyte taxonomy and diagnosis.
- Klíčová slova
- Dermatophytes, Gas chromatography-mass spectrometry, Metabolite profiles, Volatile organic compounds,
- MeSH
- Arthrodermataceae * klasifikace izolace a purifikace genetika MeSH
- fylogeneze * MeSH
- lidé MeSH
- mikroextrakce na pevné fázi MeSH
- odoranty analýza MeSH
- ovce MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí * MeSH
- těkavé organické sloučeniny * analýza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- těkavé organické sloučeniny * MeSH
Olfactory sensitivity to odorant molecules is a complex biological function influenced by both endogenous factors, such as genetic background and physiological state, and exogenous factors, such as environmental conditions. In animals, this vital ability is mediated by olfactory sensory neurons (OSNs), which are distributed across several specialized olfactory subsystems depending on the species. Using the phosphorylation of the ribosomal protein S6 (rpS6) in OSNs following sensory stimulation, we developed an ex vivo assay allowing the simultaneous conditioning and odorant stimulation of different mouse olfactory subsystems, including the main olfactory epithelium, the vomeronasal organ, and the Grueneberg ganglion. This approach enabled us to observe odorant-induced neuronal activity within the different olfactory subsystems and to demonstrate the impact of environmental conditioning, such as temperature variations, on olfactory sensitivity, specifically in the Grueneberg ganglion. We further applied our rpS6-based assay to the human olfactory system and demonstrated its feasibility. Our findings show that analyzing rpS6 signal intensity is a robust and highly reproducible indicator of neuronal activity across various olfactory systems, while avoiding stress and some experimental limitations associated with in vivo exposure. The potential extension of this assay to other conditioning paradigms and olfactory systems, as well as its application to other animal species, including human olfactory diagnostics, is also discussed.
- Klíčová slova
- 3Rs, Grueneberg ganglion, environmental factors, human, mouse, neuronal activity, olfaction, olfactory subsystems, rpS6,
- MeSH
- čich fyziologie MeSH
- čichová sliznice metabolismus MeSH
- čichové buňky * metabolismus fyziologie MeSH
- fosforylace MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- odoranty analýza MeSH
- ribozomální protein S6 * metabolismus MeSH
- vomeronazální orgán metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ribozomální protein S6 * MeSH
Pheromones convey rich ethological information and guide insects' search behavior. Insects navigating in turbulent environments are tasked with the challenge of coding the temporal structure of an odor plume, obliging recognition of the onset and offset of whiffs of odor. The coding mechanisms that shape odor offset recognition remain elusive. We designed a device to deliver sharp pheromone pulses and simultaneously measured the response dynamics from pheromone-tuned olfactory receptor neurons (ORNs) in male moths and Drosophila. We show that concentration-invariant stimulus duration encoding is implemented in moth ORNs by spike frequency adaptation at two time scales. A linear-nonlinear model fully captures the underlying neural computations and offers an insight into their biophysical mechanisms. Drosophila use pheromone cis-vaccenyl acetate (cVA) only for very short distance communication and are not faced with the need to encode the statistics of the cVA plume. Their cVA-sensitive ORNs are indeed unable to encode odor-off events. Expression of moth pheromone receptors in Drosophila cVA-sensitive ORNs indicates that stimulus-offset coding is receptor independent. In moth ORNs, stimulus-offset coding breaks down for short ( < 200 ms) whiffs. This physiological constraint matches the behavioral latency of switching from the upwind surge to crosswind cast flight upon losing contact with the pheromone.
- MeSH
- acetáty MeSH
- čich fyziologie MeSH
- čichové buňky * fyziologie MeSH
- čichové dráhy fyziologie MeSH
- Drosophila melanogaster fyziologie MeSH
- Drosophila fyziologie MeSH
- feromony * MeSH
- kyseliny olejové MeSH
- můry * fyziologie MeSH
- odoranty analýza MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetáty MeSH
- cis-vaccenyl acetate MeSH Prohlížeč
- feromony * MeSH
- kyseliny olejové MeSH
In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective 'raw' chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal's sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary 'secretome', both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.
- Klíčová slova
- biochemistry, chemical biology, chemosensory system, chemosignaling, mouse, neuroscience, olfaction, vomeronasal organ, vomeronasal sensory neurons,
- MeSH
- feromony moč metabolismus MeSH
- inbrední kmeny myší MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- odoranty analýza MeSH
- vomeronazální orgán * fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
This study investigates the rarely studied volatile organic compound emissions from a cheese production facility and the impact of its wastewater treatment system upgrade on the composition of emitted odorants. Wastewater grab samples were collected from six separate wastewater channels before (2019) and after (2021) the system upgrade and analyzed for volatile organic compounds, pH, total dissolved solids, and electrical conductivity. Results showed that the channel from hard cheese production in 2021 had the highest number of volatile organic compounds (35), followed by the fresh cheese production channel (22). Following the industrial wastewater treatment system upgrade, a mineral oil contamination occurred; however, the number of odorants with nasal impact frequency (NIF) ≥ 0.5 in the effluent decreased from 11 to 5. 2-Propenoic acid butyl ester (NIF 0.75) stood out as the most prominent compound, described as fruity, waxy, or green. After the industrial wastewater treatment system upgrades, we observed a decrease in the number of odorants. However other measures must be taken to ensure proper wastewater processing. PRACTITIONER POINTS: More than 60 VOCs were identified in 6 channels from the cheese production facility.15 odorants in cheese production wastewater were detected by SPME-GC-MS/O. The most potent odorants before and after the system upgrade were 1-octen-3-ol and 2-propenoic acid butyl ester, respectively. The upgrades of the industrial wastewater treatment system had a positive impact on reducing the number of odorants and their odor intensity.
- Klíčová slova
- GC-MS/O, cheese production wastewater, odor, olfactometry, volatile organic compounds,
- MeSH
- estery MeSH
- odoranty analýza MeSH
- odpadní voda MeSH
- sýr * analýza MeSH
- těkavé organické sloučeniny * analýza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- acrylic acid MeSH Prohlížeč
- estery MeSH
- odpadní voda MeSH
- těkavé organické sloučeniny * MeSH
The aim of this work was to show the potential of multidimensional gas chromatography combined with mass spectrometry and suitable chemometrics means based on untargeted and profiling data analysis to strengthen the information provided by floral scent and nectar fatty acids of four genetically differentiated lineages (E1, W1, W2, and W3) of the nocturnal moth-pollinated herb Silene nutans. Volatile organic compounds emitted by flowers were trapped for a total of 42 samples by in-vivo sampling dynamic head space for analysing floral scent by untargeted approach, while 37 samples of nectar were collected for analysing fatty acids through profiling analysis. The resulting data from floral scent analysis were aligned and compared using a tile-based methodology followed by data mining to access high-level information. Based on floral scent and nectar fatty acid results, it was possible to distinguish E1 from the W lineages, and W3 from W1 and W2. This work puts the bases for a larger study aiming to clarify the existence of prezygotic barriers involved in speciation among lineages of S. nutans, and thus the possible implication of different flower scents and nectar compositions in this phenomenon.
- Klíčová slova
- Chemometrics, Fatty acids, GC × GC, Head-space extraction, Volatile organic compounds,
- MeSH
- květy chemie MeSH
- odoranty analýza MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- rostlinný nektar analýza MeSH
- Silene * MeSH
- těkavé organické sloučeniny * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rostlinný nektar MeSH
- těkavé organické sloučeniny * MeSH
This paper focuses on a chemical analysis of human scent samples that were obtained from cartridge cases after being fired and their comparison with scent samples collected under laboratory conditions. Scent samples were analyzed by comprehensive two-dimensional gas chromatography coupled with the time-of-flight mass spectrometer. The results obtained from the chemical analyzes confirmed the desired stability of the human scent evidence and outlined the possible application for forensic purposes. The qualitative results of the study converge with the findings of previous studies on the composition of human scent and the chemical composition of human fingerprints. Furthermore, statistical analyzes were performed employing similarity algorithms such as Pearson's and Spearman's correlations, or Kendall's tau. The resulting comparison of the scent samples secured on fired cartridge cases compared with those samples collected under laboratory conditions yielded ten out of ten correct identifications of the scent inflictor.
- MeSH
- chromatografie plynová MeSH
- feromony MeSH
- lidé MeSH
- odoranty * analýza MeSH
- soudní lékařství * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- feromony MeSH
The practice of surgical castration of piglets and its alternatives is still under debate. Production of boars may impair meat quality due to boar taint and reduced tenderness compared to meat from surgically castrated male pigs, while immunocastration reduces boar taint and may improve meat quality but seems to be less accepted by the pig chain. In this study, we aimed to evaluate the consumer's sensory appreciation of meat from barrows (BAs), immunocastrates (ICs) and boars (BOs) in six European countries, taking into account the selection of tainted carcass and consumers' appreciation of boar taint. Loin chops of 30 BAs, 30 ICs and 30 BOs were evaluated by 752 consumers in six countries: Belgium, Czech Republic, Poland, Portugal, Romania and Spain. Consumers rated odour, flavour, tenderness, juiciness, overall liking and willingness to buy and sensitivity to and liking of androstenone (AND) and liking of skatole (SKA) was also tested. In each of the six countries, consumers liked the odour of the BO samples less than that of BA, and IC intermediate. For flavour, tenderness, juiciness, overall liking and willingness to buy, liking scores given by the Czech, Polish and Portuguese consumers significantly differed between the BA, BO and IC. Willingness to buy was highest for BA by Czech and Polish consumers and for BA and IC by Portuguese consumers. The frequency of the negative check all terms that apply terms also differed, with a higher frequency of disgusting for BO compared to BA and IC and of off-flavour, irritating, manure, sweat, disappointing compared to BA, and intermediate for IC. 31% of the consumers disliked the odour of AND (NEGAND), and 36% of them were not sensitive; in contrast, 77% of the consumers disliked SKA (NEGSKA). The decrease in flavour liking score for BO compared to BA and IC was more outspoken by the NEGAND consumer, while NEGSKA consumers gave an overall lower liking score independent of the type of male pig. The results of this study indicate that IC can be a valid alternative for surgical castration.
- Klíčová slova
- Boar taint, Check-all-that-apply, Liking, Sensitivity, Sensory profiling,
- MeSH
- chuť MeSH
- kastrace veterinární MeSH
- maso * analýza MeSH
- odoranty analýza MeSH
- prasata MeSH
- skatol * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- skatol * MeSH
People living on both sides of the German-Czech border are subject to episodes of odor air pollution. A joint German-Czech air sampling and risk assessment project was established to identify the substances responsible and their sources. Twenty-four volunteer study participants, 14 from the NW Czech Republic and 10 from Germany (Saxony) reported odors and collected canister samples during sampling periods in winter 2017 and 2018 and autumn 2018. Canister samples and passive samplers were analyzed for volatile organic compounds (VOCs) and passive samplers were analyzed for VOCs and carbonyls. OAVs (Odor Activity Values) and back trajectories were calculated with the aim of identifying the odor sources. Calculated OAVs were in excellent agreement with perceived smells close to an oil processing plant. Odorants identified in fifty canister samples during odor episodes and carbonyl measurements close to the edible oil processing plant were used for health evaluation. Odors reported by participants in Saxony frequently differed from those reported by participants in the Czech Republic. This suggests that certain sources of odor lying on either side of the border only affect that side and not the other with similar considerations regarding health effects. VOCs, including carbonyls, were also sampled at two relatively remote locations during winters of 2017 and 2018; two main sources of odorous compounds were identified at these sites. Analysis of samples taken at sampling sites shows that VOC air pollution and, to a lesser extent carbonyl pollution, originate from both industrial and local sources. Even though levels of sampled substances were not associated with acute effects at any site, long-term exposures to selected compounds could be cause for concern for carcinogenicity at some sites. Odors in Seiffen were associated with carcinogenic compounds in can samples. Although not necessarily representative of long-term exposures to the compounds studied, results such as these suggest that further study is needed to better quantify long-term exposure to potentially harmful compounds, and to either confirm or deny the existence of substantive health risk.
- Klíčová slova
- GC-MS analysis, canister sampling, health impact, odorous compounds, passive sampling,
- MeSH
- hodnocení rizik MeSH
- látky znečišťující vzduch * analýza MeSH
- lidé MeSH
- monitorování životního prostředí metody MeSH
- odoranty analýza MeSH
- těkavé organické sloučeniny * analýza MeSH
- zapojení do společnosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- těkavé organické sloučeniny * MeSH