Alagille Dotaz Zobrazit nápovědu
Spontaneous bleeds are a leading cause of death in the pediatric JAG1-related liver disease Alagille syndrome (ALGS). We asked whether there are sex differences in bleeding events in patients, whether Jag1Ndr/Ndr mice display bleeds or vascular defects, and whether discovered vascular pathology can be confirmed in patients non-invasively. We performed a systematic review of patients with ALGS and vascular events following PRISMA guidelines, in the context of patient sex, and found significantly more girls than boys reported with spontaneous intracranial hemorrhage. We investigated vascular development, homeostasis, and bleeding in Jag1Ndr/Ndr mice, using retina as a model. Jag1Ndr/Ndr mice displayed sporadic brain bleeds, a thin skull, tortuous blood vessels, sparse arterial smooth muscle cell coverage in multiple organs, which could be aggravated by hypertension, and sex-specific venous defects. Importantly, we demonstrated that retinographs from patients display similar characteristics with significantly increased vascular tortuosity. In conclusion, there are clinically important sex differences in vascular disease in ALGS, and retinography allows non-invasive vascular analysis in patients. Finally, Jag1Ndr/Ndr mice represent a new model for vascular compromise in ALGS.
- Klíčová slova
- Alagille syndrome, Bleeding, Jagged1, Notch, Vasculature,
- MeSH
- Alagillův syndrom * komplikace MeSH
- myši MeSH
- pohlavní dimorfismus MeSH
- retina MeSH
- rizikové faktory MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- systematický přehled MeSH
Alagille syndrome may mimic biliary atresia in early infancy. Since mutations in JAG1 typical for Alagille syndrome type 1 have also been found in biliary atresia, we aimed to identify JAG1 mutations in newborns with proven biliary atresia (n = 72). Five biliary atresia patients with cholestasis, one additional characteristic feature of Alagille syndrome and ambiguous liver histology were single heterozygotes for nonsense or frameshift mutations in JAG1. No mutations were found in the remaining 67 patients. All "biliary atresia" carriers of JAG1 null mutations developed typical Alagille syndrome at the age of three years. Our data do not support association of biliary atresia with JAG1 mutations, at least in Czech patients. Rapid testing for JAG1 mutations could prevent misdiagnosis of Alagille syndrome in early infancy and improve their outcome.
- MeSH
- Alagillův syndrom diagnóza genetika MeSH
- atrézie žlučových cest genetika MeSH
- diferenciální diagnóza MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- mezibuněčné signální peptidy a proteiny genetika MeSH
- mutace MeSH
- nesmyslný kodon MeSH
- novorozenec MeSH
- posunová mutace MeSH
- protein jagged-1 MeSH
- proteiny vázající vápník genetika MeSH
- serrate-jagged proteiny MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- JAG1 protein, human MeSH Prohlížeč
- membránové proteiny MeSH
- mezibuněčné signální peptidy a proteiny MeSH
- nesmyslný kodon MeSH
- protein jagged-1 MeSH
- proteiny vázající vápník MeSH
- serrate-jagged proteiny MeSH
BACKGROUND & AIMS: Alagille syndrome is a genetic disorder characterized by cholestasis, ocular abnormalities, characteristic facial features, heart defects, and vertebral malformations. Most cases are associated with mutations in JAGGED1 (JAG1), which encodes a Notch ligand, although it is not clear how these contribute to disease development. We aimed to develop a mouse model of Alagille syndrome to elucidate these mechanisms. METHODS: Mice with a missense mutation (H268Q) in Jag1 (Jag1+/Ndr mice) were outbred to a C3H/C57bl6 background to generate a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice). Liver tissues were collected at different timepoints during development, analyzed by histology, and liver organoids were cultured and analyzed. We performed transcriptome analysis of Jag1Ndr/Ndr livers and livers from patients with Alagille syndrome, cross-referenced to the Human Protein Atlas, to identify commonly dysregulated pathways and biliary markers. We used species-specific transcriptome separation and ligand-receptor interaction assays to measure Notch signaling and the ability of JAG1Ndr to bind or activate Notch receptors. We studied signaling of JAG1 and JAG1Ndr via NOTCH 1, NOTCH2, and NOTCH3 and resulting gene expression patterns in parental and NOTCH1-expressing C2C12 cell lines. RESULTS: Jag1Ndr/Ndr mice had many features of Alagille syndrome, including eye, heart, and liver defects. Bile duct differentiation, morphogenesis, and function were dysregulated in newborn Jag1Ndr/Ndr mice, with aberrations in cholangiocyte polarity, but these defects improved in adult mice. Jag1Ndr/Ndr liver organoids collapsed in culture, indicating structural instability. Whole-transcriptome sequence analyses of liver tissues from mice and patients with Alagille syndrome identified dysregulated genes encoding proteins enriched at the apical side of cholangiocytes, including CFTR and SLC5A1, as well as reduced expression of IGF1. Exposure of Notch-expressing cells to JAG1Ndr, compared with JAG1, led to hypomorphic Notch signaling, based on transcriptome analysis. JAG1-expressing cells, but not JAG1Ndr-expressing cells, bound soluble Notch1 extracellular domain, quantified by flow cytometry. However, JAG1 and JAG1Ndr cells each bound NOTCH2, and signaling from NOTCH2 signaling was reduced but not completely inhibited, in response to JAG1Ndr compared with JAG1. CONCLUSIONS: In mice, expression of a missense mutant of Jag1 (Jag1Ndr) disrupts bile duct development and recapitulates Alagille syndrome phenotypes in heart, eye, and craniofacial dysmorphology. JAG1Ndr does not bind NOTCH1, but binds NOTCH2, and elicits hypomorphic signaling. This mouse model can be used to study other features of Alagille syndrome and organ development.
- Klíčová slova
- Alagille, Development, Heart, Jagged1, Kidney, Liver, Notch, Vertebrae,
- MeSH
- Alagillův syndrom genetika metabolismus patologie MeSH
- buněčná diferenciace MeSH
- fenotyp MeSH
- genetická predispozice k nemoci MeSH
- HEK293 buňky MeSH
- kokultivační techniky MeSH
- lidé MeSH
- missense mutace * MeSH
- modely nemocí na zvířatech MeSH
- morfogeneze MeSH
- myši inbrední C3H MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- organoidy MeSH
- protein jagged-1 genetika metabolismus MeSH
- receptor Notch2 genetika metabolismus MeSH
- signální transdukce MeSH
- stanovení celkové genové exprese metody MeSH
- transfekce MeSH
- vývojová regulace genové exprese MeSH
- žlučové cesty intrahepatální metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- JAG1 protein, human MeSH Prohlížeč
- Jag1 protein, mouse MeSH Prohlížeč
- Notch2 protein, mouse MeSH Prohlížeč
- protein jagged-1 MeSH
- receptor Notch2 MeSH
Organ function depends on tissues adopting the correct architecture. However, insights into organ architecture are currently hampered by an absence of standardized quantitative 3D analysis. We aimed to develop a robust technology to visualize, digitalize, and segment the architecture of two tubular systems in 3D: double resin casting micro computed tomography (DUCT). As proof of principle, we applied DUCT to a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice), characterized by intrahepatic bile duct paucity, that can spontaneously generate a biliary system in adulthood. DUCT identified increased central biliary branching and peripheral bile duct tortuosity as two compensatory processes occurring in distinct regions of Jag1Ndr/Ndr liver, leading to full reconstitution of wild-type biliary volume and phenotypic recovery. DUCT is thus a powerful new technology for 3D analysis, which can reveal novel phenotypes and provide a standardized method of defining liver architecture in mouse models.
Many essential parts of the body contain tubes: the liver for example, contains bile ducts and blood vessels. These tubes develop right next to each other, like entwined trees. To do their jobs, these ducts must communicate and collaborate, but they do not always grow properly. For example, babies with Alagille syndrome are born with few or no bile ducts, resulting in serious liver disease. Understanding the architecture of the tubes in their livers could explain why some children with this syndrome improve with time, but many others need a liver transplant. Visualising biological tubes in three dimensions is challenging. One major roadblock is the difficulty in seeing several tubular structures at once. Traditional microscopic imaging of anatomy is in two dimensions, using slices of tissue. This approach shows the cross-sections of tubes, but not how the ducts connect and interact. An alternative is to use micro computed tomography scans, which use X-rays to examine structures in three dimensions. The challenge with this approach is that soft tissues, which tubes in the body are made of, do not show up well on X-ray. One way to solve this is to fill the ducts with X-ray absorbing resins, making a cast of the entire tree structure. The question is, can two closely connected tree structures be distinguished if they are cast at the same time? To address this question, Hankeova, Salplachta et al. developed a technique called double resin casting micro computed tomography, or DUCT for short. The approach involved making casts of tube systems using two types of resin that show up differently under X-rays. The new technique was tested on a mouse model of Alagille syndrome. One resin was injected into the bile ducts, and another into the blood vessels. This allowed Hankeova, Salplachta et al. to reconstruction both trees digitally, revealing their length, volume, branching, and interactions. In healthy mice, the bile ducts were straight with uniform branches, but in mice with Alagille syndrome ducts were wiggly, and had extra branches in the centre of the liver. This new imaging technique could improve the understanding of tube systems in animal models of diseases, both in the liver and in other organs with tubes, such as the lungs or the kidneys. Hankeova, Salplachta et al. also lay a foundation for a deeper understanding of bile duct recovery in Alagille syndrome. In the future, DUCT could help researchers to see how mouse bile ducts change in response to experimental therapies.
- Klíčová slova
- Alagille syndrome, MicroCT, cholangiopathy, human, mouse, physics of living systems, regenerative medicine, resin, stem cells, vasculature,
- MeSH
- Alagillův syndrom patofyziologie MeSH
- modely nemocí na zvířatech MeSH
- myši transgenní MeSH
- myši MeSH
- rentgenová mikrotomografie klasifikace metody MeSH
- žlučové cesty růst a vývoj patofyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Notch signaling controls multiple aspects of embryonic development and adult homeostasis. Alagille syndrome is usually caused by a single mutation in the jagged canonical Notch ligand 1 (JAG1), and manifests with liver disease and cardiovascular symptoms that are a direct consequence of JAG1 haploinsufficiency. Recent insights into Jag1/Notch-controlled developmental and homeostatic processes explain how pathology develops in the hepatic and cardiovascular systems and, together with recent elucidation of mechanisms modulating liver regeneration, provide a basis for therapeutic efforts. Importantly, disease presentation can be regulated by genetic modifiers, that may also be therapeutically leverageable. Here, we summarize recent insights into how Jag1 controls processes of relevance to Alagille syndrome, focused on Jag1/Notch functions in hepatic and cardiovascular development and homeostasis.
- MeSH
- Alagillův syndrom * diagnóza genetika terapie MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- mezibuněčné signální peptidy a proteiny genetika MeSH
- protein jagged-1 genetika MeSH
- proteiny vázající vápník genetika MeSH
- serrate-jagged proteiny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- membránové proteiny MeSH
- mezibuněčné signální peptidy a proteiny MeSH
- protein jagged-1 MeSH
- proteiny vázající vápník MeSH
- serrate-jagged proteiny MeSH
BACKGROUND: Alagille syndrome (ALGS) is a highly variable multisystem disorder inherited in an autosomal dominant pattern with incomplete penetration. The disorder is caused by mutations in the JAG1 gene, only rarely in the NOTCH2 gene, which gives rise to malformations in multiple organs. Bile duct paucity is the main characteristic feature of the disease. METHODS: Molecular-genetic examination of genes JAG1 and NOTCH2 in four probands of Czech origin who complied with the diagnostic criteria of ALGS was performed using targeted next-generation sequencing of genes JAG1 and NOTCH2. Segregation of variants in a family was assessed by Sanger sequencing of parental DNA. RESULTS: Mutations in the JAG1 gene were confirmed in all four probands. We identified two novel mutations: c.3189dupG and c.1913delG. Only in one case, the identified JAG1 mutation was de novo. None of the parents carrying JAG1 pathogenic mutation was diagnosed with ALGS. CONCLUSION: Diagnosis of the ALGS is complicated due to the absence of clear genotype-phenotype correlations and the extreme phenotypic variability in the patients even within the same family. This fact is of particular importance in connection to genetic counselling and prenatal genetic testing.
- Klíčová slova
- Alagille syndrome, JAG1 gene, cholestasis, pediatric patients,
- Publikační typ
- časopisecké články MeSH
Pathogenic variants in JAG1 are known to cause Alagille syndrome (ALGS), a disorder that primarily affects the liver, lung, kidney, and skeleton. Whereas cardiac symptoms are also frequently observed in ALGS, thoracic aortic aneurysms have only been reported sporadically in postmortem autopsies. We here report two families with segregating JAG1 variants that present with isolated aneurysmal disease, as well as the first histological evaluation of aortic aneurysm tissue of a JAG1 variant carrier. Our observations shed more light on the pathomechanisms behind aneurysm formation in JAG1 variant harboring individuals and underline the importance of cardiovascular imaging in the clinical follow-up of such individuals.
- Klíčová slova
- Alagille syndrome, JAG1, intracranial aneurysm, thoracic aortic aneurysm,
- MeSH
- Alagillův syndrom * genetika MeSH
- lidé MeSH
- protein jagged-1 genetika metabolismus MeSH
- proteiny vázající vápník MeSH
- srdce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- JAG1 protein, human MeSH Prohlížeč
- protein jagged-1 MeSH
- proteiny vázající vápník MeSH
- MeSH
- biopsie MeSH
- dospělí MeSH
- játra patologie MeSH
- lidé MeSH
- mnohočetné abnormality krev genetika patologie MeSH
- předškolní dítě MeSH
- syndrom MeSH
- vrozené srdeční vady krev genetika patologie MeSH
- žlučové cesty intrahepatální abnormality MeSH
- žlučové kyseliny a soli krev MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- anglický abstrakt MeSH
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- žlučové kyseliny a soli MeSH
Fibrosis contributes to tissue repair, but excessive fibrosis disrupts organ function. Alagille syndrome (ALGS, caused by mutations in JAGGED1) results in liver disease and characteristic fibrosis. Here, we show that Jag1Ndr/Ndr mice, a model for ALGS, recapitulate ALGS-like fibrosis. Single-cell RNA-seq and multi-color flow cytometry of the liver revealed immature hepatocytes and paradoxically low intrahepatic T cell infiltration despite cholestasis in Jag1Ndr/Ndr mice. Thymic and splenic regulatory T cells (Tregs) were enriched and Jag1Ndr/Ndr lymphocyte immune and fibrotic capacity was tested with adoptive transfer into Rag1-/- mice, challenged with dextran sulfate sodium (DSS) or bile duct ligation (BDL). Transplanted Jag1Ndr/Ndr lymphocytes were less inflammatory with fewer activated T cells than Jag1+/+ lymphocytes in response to DSS. Cholestasis induced by BDL in Rag1-/- mice with Jag1Ndr/Ndr lymphocytes resulted in periportal Treg accumulation and three-fold less periportal fibrosis than in Rag1-/- mice with Jag1+/+ lymphocytes. Finally, the Jag1Ndr/Ndr hepatocyte expression profile and Treg overrepresentation were corroborated in patients' liver samples. Jag1-dependent hepatic and immune defects thus interact to determine the fibrotic process in ALGS.
- Klíčová slova
- Alagille syndrome, Fibrosis, Jagged1, Notch, Treg,
- MeSH
- Alagillův syndrom patologie genetika MeSH
- buněčná diferenciace * MeSH
- hepatocyty * metabolismus patologie MeSH
- jaterní cirhóza * patologie genetika MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- protein jagged-1 * metabolismus genetika MeSH
- regulační T-lymfocyty imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- JAG1 protein, human MeSH Prohlížeč
- Jag1 protein, mouse MeSH Prohlížeč
- protein jagged-1 * MeSH