Charge functionalization Dotaz Zobrazit nápovědu
Beyond graphene, 2D pnictogen polymers are rapidly growing among the family of 2D materials. Due to their unique properties, this group has received considerable interest in recent years. Those properties include tunable electronic band gaps, high charge carrier mobility, and in-plane anisotropic properties. This Review covers the noncovalent functionalization of pnictogen surfaces considering experimental and theoretical studies. Noncovalent functionalization is of great importance for effective modulation of the electronic structure of these materials as well as improvement of their stability toward surface oxidation. This Review highlights their noncovalent modification by organic molecules, in which enhanced surface stability of phosphorene and generated functionalized materials for applications in biomedical, supercapacitors, energy storage, and biosensors. Moreover, the noncovalent interactions with small molecules show its significance for sensing applications. Lastly, the interactions of pnictogen sheets with other 2D materials and their applications for van der Waals heterostructure formation are discussed. Current state-of-the-art as well as future perspectives in this field are covered.
- Klíčová slova
- antimonene, arsenene, noncovalent functionalization, phosphorene, pnictogens,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
We investigate electroluminescence of single molecular emitters on NaCl on Ag(111) and Au(111) with submolecular resolution in a low-temperature scanning probe microscope with tunneling current, atomic force, and light detection capabilities. The role of the tip state is studied in the photon maps of a prototypical emitter, zinc phthalocyanine (ZnPc), using metal and CO-metal tips. CO-functionalization is found to have an impact on the resolution and contrast of the photon maps due to the localized overlap of the p-orbitals on the tip with the molecular orbitals of the emitter. The possibility of using the same CO-functionalized tip for tip-enhanced photon detection and high resolution atomic force is demonstrated. We study the electroluminescence of ZnPc, induced by charge carrier injection at sufficiently high bias voltages. We propose that the distinct level alignment of the ZnPc frontier orbitals with the Au(111) and Ag(111) Fermi levels governs the primary excitation mechanisms as the injection of electrons and holes from the tip into the molecule, respectively. These findings put forward the importance of the tip status in the photon maps and contribute to a better understanding of the photophysics of organic molecules on surfaces.
In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr-ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge-transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr-ESFG especially sensitive to the trion formation dynamics. The presence of charge-transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.
- Klíčová slova
- Time-resolved interfacial-sensitive spectroscopy, charge transfer, molecular- functionalized monolayer TMD, sum frequency generation, trion,
- Publikační typ
- časopisecké články MeSH
Peptides containing amino acids with ionisable side chains represent a typical example of weak ampholytes, that is, molecules with multiple titratable acid and base groups, which generally exhibit charge regulating properties upon changes in pH. Charged groups on an ampholyte interact electrostatically with each other, and their interaction is coupled to conformation of the (macro)molecule, resulting in a complex feedback loop. Their charge-regulating properties are primarily determined by the pKA of individual ionisable side-chains, modulated by electrostatic interactions between the charged groups. The latter is determined by the amino acid sequence in the peptide chain. In our previous work we introduced a simple coarse-grained model of a flexible peptide. We validated it against experiments, demonstrating its ability to quantitatively predict charge on various peptides in a broad range of pH. In the current work, we investigated two types of peptide sequences: diblock and alternating, each of them consisting of an equal number of amino acids with acid and base side-chains. We showed that changing the sequence while keeping the same overall composition has a profound effect on the conformation, whereas it practically does not affect total charge on the peptide. Nevertheless, the sequence significantly affects the charge state of individual groups, showing that the zero net effect on the total charge is a consequence of unexpected cancellation of effects. Furthermore, we investigated how the difference between the pKA of acid and base side chains affects the charge and conformation of the peptide, showing that it is possible to tune the charge-regulating properties by following simple guiding principles based on the pKA and on the amino acid sequence. Our current results provide a theoretical basis for understanding of the complex coupling between the ionisation and conformation in flexible polyampholytes, including synthetic polymers, biomimetic materials and biological molecules, such as intrinsically disordered proteins, whose function can be regulated by changes in the pH.
- Klíčová slova
- acid-base equilibrium, ampholyte, charge regulation, coarse-grained, constant-pH, ionization, peptide, polyelectrolyte, simulation,
- Publikační typ
- časopisecké články MeSH
Performance of the (CdZn)Te pixelated detectors heavily relies on the quality of the underlying material. Modern laser-induced transient current technique addresses this problem as a convenient tool for characterizing the associated charge distribution. In this paper, we investigated the charge sharing phenomenon in (CdZn)Te pixel detector as a function of the charge collected on adjacent pixels. The current transients were generated in the defined 4 mm2 spots using 660 nm laser illumination. Waveforms measured on the pixel of interest and its surroundings were used to build the maps of the collected charge at different biases. The detailed study of the maps allowed us to distinguish the charge sharing region, the region with a defect, and the finest part in terms of the performance part of the pixelated anode. We observed the principal inhomogeneity complicating the assignment of the illuminated spot to the nearest pixel.
- Klíčová slova
- (CdZn)Te, charge sharing, small pixel effect, transient current,
- Publikační typ
- časopisecké články MeSH
Charge transfer is one of the mechanisms involved in non-covalent interactions. In molecular dimers, its contribution to pairwise interaction energies has been studied extensively using a variety of interaction energy decomposition schemes. In polar interactions such as hydrogen bonds, it can contribute ten or several tens of percent of the interaction energy. Less is known about its importance in higher-order interactions in many-body systems, mainly because of the lack of methods applicable to this problem. In this work, we extend our method for the quantification of the charge-transfer energy based on constrained DFT to many-body cases and apply it to model trimers extracted from molecular crystals. Our calculations show that charge transfer can account for a large fraction of the total three-body interaction energy. This also has implications for DFT calculations of many-body interactions in general as it is known that many DFT functionals struggle to describe charge-transfer effects correctly.
- Klíčová slova
- charge transfer, density functional theory, interaction energy decomposition, many-body interactions, non-covalent interactions,
- Publikační typ
- časopisecké články MeSH
Observations of superconductivity and charge density waves (CDW) in graphene have been elusive thus far due to weak electron-phonon coupling (EPC) interactions. Here, we report a unique observation of anomalous transport and multiple charge ordering phases at high temperatures (T1∼213K,T2∼325K) in a 0D-2D van der Waals (vdW) heterostructure comprising of single layer graphene (SLG) and functionalized (amine) graphene quantum dots (GQD). The presence of functionalized GQD contributed to charge transfer with shifting of the Dirac point ∼ 0.05 eV above the Fermi level (ab initio simulations) and carrier densityn∼-0.3×1012 cm-2confirming p-doping in SLG and two-fold increase in EPC interaction was achieved. Moreover, we elucidate the interplay between electron-electron and electron-phonon interactions to substantiate high temperature EPC driven charge ordering in the heterostructure through analyses of magnetotransport and weak anti-localization (WAL) framework. Our results provide impetus to investigate strongly correlated phenomena such as CDW and superconducting phase transitions in novel graphene based heterostructures.
- Klíčová slova
- Raman spectroscopy, ab initio simulation, charge ordering, graphene, graphene quantum dots, heterostructure, low temperature transport,
- Publikační typ
- časopisecké články MeSH
In recent years, graphene-based van der Waals (vdW) heterostructures have come into prominence showcasing interesting charge transfer dynamics which is significant for optoelectronic applications. These novel structures are highly tunable depending on several factors such as the combination of the two-dimensional materials, the number of layers and band alignment exhibiting interfacial charge transfer dynamics. Here, we report on a novel graphene based 0D-2D vdW heterostructure between graphene and amine-functionalized graphene quantum dots (GQD) to investigate the interfacial charge transfer and doping possibilities. Using a combination ofab initiosimulations and Kelvin probe force microscopy (KPFM) measurements, we confirm that the incorporation of functional GQDs leads to a charge transfer induced p-type doping in graphene. A shift of the Dirac point by 0.05 eV with respect to the Fermi level (EF) in the graphene from the heterostructure was deduced from the calculated density of states. KPFM measurements revealed an increment in the surface potential of the GQD in the 0D-2D heterostructure by 29 mV with respect to graphene. Furthermore, we conducted power dependent Raman spectroscopy for both graphene and the heterostructure samples. An optical doping-induced gating effect resulted in a stiffening of theGband for electrons and holes in both samples (graphene and the heterostructure), suggesting a breakdown of the adiabatic Born-Oppenheimer approximation. Moreover, charge imbalance and renormalization of the electron-hole dispersion under the additional influence of the doped functional GQDs is pointing to an asymmetry in conduction and carrier mobility.
- Klíčová slova
- ab initio, charge transfer, graphene, graphene quantum dots, scanning probe microscopy,
- Publikační typ
- časopisecké články MeSH
We used ultrafast transient absorption spectroscopy to study excited-state dynamics of two keto-carotenoids, siphonaxanthin and siphonein. These two carotenoids differ in the presence of dodecanoyl-oxy group in siphonein, which is attached to the C19 carbon on the same side of the molecule as the conjugated keto group. We show that this dodecanoyl-oxy group, though not in conjugation, is still capable of modifying excited state properties. While spectroscopic properties of siphonein and siphonaxanthin are nearly identical in a non-polar solvent, they become markedly different in polar solvents. In a polar solvent, siphonein, having the dodecanoyl-oxy moiety, exhibits less pronounced vibrational bands in the absorption spectrum and has significantly enhanced characteristic features of an intramolecular charge-transfer (ICT) state in transient absorption spectra compared to siphonaxanthin. The presence of the dodecanoyl-oxy moiety also alters the lifetimes of the S1/ICT state. For siphonaxanthin, the lifetimes are 60, 20, and 14 ps in n-hexane, acetonitrile, and methanol, whereas for siphonein these lifetimes yield 60, 11, and 10 ps. Thus, we show that even a non-conjugated functional group can affect the charge-transfer character of the S1/ICT state. By comparison with fucoxanthin acyl-oxy derivatives, we show that position of the acyl-oxy group in respect to the conjugated keto group is the key feature determining whether the polarity-dependent behavior is enhanced or suppressed.
- Klíčová slova
- Carotenoid, Charge-transfer state, Excited-state dynamics, Ultrafast spectroscopy,
- MeSH
- acetonitrily chemie MeSH
- hexany chemie MeSH
- karotenoidy chemie MeSH
- molekulární struktura MeSH
- rentgenová absorpční spektroskopie přístrojové vybavení metody MeSH
- rozpouštědla chemie MeSH
- vodíková vazba MeSH
- xanthofyly chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetonitrile MeSH Prohlížeč
- acetonitrily MeSH
- fucoxanthin MeSH Prohlížeč
- hexany MeSH
- karotenoidy MeSH
- n-hexane MeSH Prohlížeč
- rozpouštědla MeSH
- siphonaxanthin MeSH Prohlížeč
- xanthofyly MeSH
The pro-apoptotic proteins Bax and Bak are essential for executing programmed cell death (apoptosis), yet the mechanism of their activation is not properly understood at the structural level. For the first time in cell death research, we calculated intra-protein charge transfer in order to study the structural alterations and their functional consequences during Bax activation. Using an electronegativity equalization model, we investigated the changes in the Bax charge profile upon activation by a functional peptide of its natural activator protein, Bim. We found that charge reorganizations upon activator binding mediate the exposure of the functional sites of Bax, rendering Bax active. The affinity of the Bax C-domain for its binding groove is decreased due to the Arg94-mediated abrogation of the Ser184-Asp98 interaction. We further identified a network of charge reorganizations that confirms previous speculations of allosteric sensing, whereby the activation information is conveyed from the activation site, through the hydrophobic core of Bax, to the well-distanced functional sites of Bax. The network was mediated by a hub of three residues on helix 5 of the hydrophobic core of Bax. Sequence and structural alignment revealed that this hub was conserved in the Bak amino acid sequence, and in the 3D structure of folded Bak. Our results suggest that allostery mediated by charge transfer is responsible for the activation of both Bax and Bak, and that this might be a prototypical mechanism for a fast activation of proteins during signal transduction. Our method can be applied to any protein or protein complex in order to map the progress of allosteric changes through the proteins' structure.
- MeSH
- alosterická regulace MeSH
- apoptóza fyziologie MeSH
- biologické modely * MeSH
- interakční proteinové domény a motivy MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- počítačová simulace MeSH
- protein Bak chemie genetika metabolismus MeSH
- protein X asociovaný s bcl-2 chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- statická elektřina MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
- Názvy látek
- BAK1 protein, human MeSH Prohlížeč
- BAX protein, human MeSH Prohlížeč
- protein Bak MeSH
- protein X asociovaný s bcl-2 MeSH