Endocrine disruptive activity of compounds produced by cyanobacteria Dotaz Zobrazit nápovědu
Here is presented some of the first information on interactions of compounds produced by cyanobacteria and green algae with estrogen receptor signaling. Estrogenic potency of aqueous extracts and exudates (culture spent media with extracellular products) of seven species of cyanobacteria (10 different laboratory strains) and two algal species were assessed by use of in vitro trans-activation assays. Compounds produced by cyanobacteria and algae, and in particular those excreted from the cells, were estrogenic. Most exudates were estrogenic with potencies expressed at 50% of the maximum response under control of the estrogen receptor ranging from 0.2 to 7.2 ng 17β-estradiol (E(2)) equivalents (EEQ)/L. The greatest estrogenic potency was observed for exudates of Microcystis aerigunosa, a common species that forms water blooms. Aqueous extracts of both green algae, but only one species of cyanobacteria (Aphanizomenon gracile) elicited significant estrogenicity with EEQ ranging from 15 to 280 ng 17β-estradiol (E(2))/g dry weight. Scenedesmus quadricauda exudates and extracts of Aphanizomenon flos-aquae were antagonistic to the ER when coexposed to E(2). The EEQ potency was not correlated with concentrations of cyanotoxins, such as microcystin and cylindrospermopsin, which suggests that the EEQ was comprised of other compounds. The study demonstrates some differences between the estrogenic potency of aqueous extracts prepared from the same species, but of different origin, while the effects of exudates were comparable within species. The observed estrogenic potencies are important namely in relation to the possible mass expansion of cyanobacteria and release of the active compounds into surrounding water.
- MeSH
- Aphanizomenon metabolismus MeSH
- biotest MeSH
- chemické látky znečišťující vodu metabolismus farmakologie MeSH
- Chlorophyta metabolismus MeSH
- endokrinní disruptory metabolismus farmakologie MeSH
- estradiol metabolismus farmakologie MeSH
- estrogeny metabolismus farmakologie MeSH
- eutrofizace MeSH
- exsudáty a transsudáty chemie MeSH
- mezibuněčná komunikace fyziologie MeSH
- Microcystis účinky léků MeSH
- receptory pro estrogeny metabolismus MeSH
- sinice metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- endokrinní disruptory MeSH
- estradiol MeSH
- estrogeny MeSH
- receptory pro estrogeny MeSH
Stagnant freshwaters can be affected by anthropogenic pollution and eutrophication that leads to massive growth of cyanobacteria and microalgae forming complex water blooms. These can produce various types of bioactive compounds, some of which may cause embryotoxicity, teratogenicity, endocrine disruption and impair animal or human health. This study focused on potential co-occurrence of estrogenic and retinoid-like activities in diverse stagnant freshwaters affected by phytoplankton blooms with varying taxonomic composition. Samples of phytoplankton bloom biomass and its surrounding water were collected from 17 independent stagnant water bodies in the Czech Republic and Hungary. Total estrogenic equivalents (EEQ) of the most potent samples reached up to 4.9 ng·g-1 dry mass (dm) of biomass extract and 2.99 ng·L-1 in surrounding water. Retinoic acid equivalent (REQ) measured by in vitro assay reached up to 3043 ng·g-1 dm in phytoplankton biomass and 1202 ng·L-1in surrounding water. Retinoid-like and estrogenic activities at some sites exceeded their PNEC and effect-based trigger values, respectively. The observed effects were not associated with any particular species of cyanobacteria or algae dominating the water blooms nor related to phytoplankton density. We found that taxonomically diverse phytoplankton communities can produce and release retinoid-like compounds to surrounding water, while estrogenic potency is likely related to estrogens of anthropogenic origin adsorbed to phytoplankton biomass. Retinoids occurring in water blooms are ubiquitous signalling molecules, which can affect development and neurogenesis. Selected water bloom samples (both water and biomass extracts) with retinoid-like activity caused effects on neurodifferentiation in vitro corresponding to those of equivalent all-trans-retinoic acid concentrations. Co-occurrence of estrogenic and retinoid-like activities in stagnant water bodies as well as the potential of compounds produced by water blooms to interfere with neural differentiation should be considered in the assessment of risks associated with water blooms, which can comprise complex mixtures of natural and anthropogenic bioactive compounds.
- Klíčová slova
- Endocrine disruption, Estrogenic activity, Neural differentiation, Phytoplankton water bloom, Retinoid-like activity,
- MeSH
- estrogeny analýza MeSH
- estron MeSH
- eutrofizace MeSH
- fytoplankton MeSH
- komplexní směsi MeSH
- lidé MeSH
- retinoidy * MeSH
- rostlinné extrakty MeSH
- sinice * MeSH
- tretinoin MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- estrogeny MeSH
- estron MeSH
- komplexní směsi MeSH
- retinoidy * MeSH
- rostlinné extrakty MeSH
- tretinoin MeSH
- voda MeSH