Gram-negative pathogen
Dotaz
Zobrazit nápovědu
The genus Pantoea, of which Pantoea agglomerans is the most common species, is an emerging Gram-negative facultative anaerobic bacillus that causes a wide range of opportunistic infections. To date, the prevalence, antibiotic resistance, and pathogenic potential of this bacterium in animals remains largely unexplored. The aim of this work was to describe the prevalence of microorganisms of the genus Pantoea in clinical samples obtained from animals during the period 2015-2017 and to define their susceptibility to antimicrobial agents. In the monitored period, a total of 23,739 clinical samples obtained from animals in the Czech Republic with symptoms of disease were tested, from which 151 Pantoea genus were isolated (prevalence 0.63 %). Cultivation and incubation were carried out under aerobic conditions by culture methods using massopeptone blood agar, Endo's agar and xylose lysine deoxycholate agar at 37 ± 1 °C for 24 h. Suspect strains were confirmed by matrix-assisted laser desorption/ionization coupled to time-of-flight mass spectrometry (MALDI-TOF MS). Susceptibility testing was performed by the standard disk diffusion method using Mueller-Hinton agar. Pantoea strains were recovered from domestic horses, carnivores (dogs, cats) and rodents (prevalence of 6.78, 1.64 and 1.12 % respectively). Resistance to beta-lactam antimicrobials was detected in 12 strains. In addition to beta-lactams, resistance to co-trimoxazole was detected in 1 case and to co-trimoxazole and chloramphenicol in 1 case, highlights the need to monitor the emergence of this strain in the context of the One Health approach.
- Klíčová slova
- Animal, Antimicrobial resistance, Environment, One health, Pantoea agglomerans, Public health,
- Publikační typ
- časopisecké články MeSH
Bordetella pertussis is a Gram-negative, strictly human re-emerging respiratory pathogen and the causative agent of whooping cough. The requirement of the RNA chaperone Hfq for the virulence of B. pertussis suggests that Hfq-dependent small regulatory RNAs (sRNAs) are involved in the virulence of this pathogen. To identify their potential mRNA targets, we applied a method combining experimental and computational approaches called RIL-seq. The majority of putative mRNA targets, including several virulence factors, interact with two sRNAs, CT_433 and CT_521, suggesting that these sRNAs may represent central riboregulatory nodes of B. pertussis. Furthermore, our data suggest that CT_532 sRNA can base pair with the 5'UTR region of ompA mRNA encoding outer membrane protein BP0943 (OmpA) and that CT_532, RNase III and Hfq are involved in the control of ompA expression. The CT_532 sRNA shares 60% identity with the E. coli sRNA MicA and its expression is also modulated by Hfq and stress conditions such as heat and cold shocks. Overall, these results suggest that CT_532 represents a MicA homolog. Importantly, the mutant lacking the first 22 nucleotides of CT_532 exhibits reduced cytotoxicity towards human macrophages and impaired biofilm production but increased resistance to complement compared to the wild type strain.
- MeSH
- 5' nepřekládaná oblast MeSH
- bakteriální RNA * metabolismus genetika MeSH
- biofilmy * růst a vývoj MeSH
- Bordetella pertussis * genetika patogenita fyziologie MeSH
- lidé MeSH
- malá nekódující RNA * metabolismus genetika MeSH
- messenger RNA metabolismus MeSH
- protein hostitelského faktoru 1 * metabolismus genetika MeSH
- proteiny vnější bakteriální membrány genetika metabolismus MeSH
- regulace genové exprese u bakterií MeSH
- virulence genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- bakteriální RNA * MeSH
- malá nekódující RNA * MeSH
- messenger RNA MeSH
- OMPA outer membrane proteins MeSH Prohlížeč
- protein hostitelského faktoru 1 * MeSH
- proteiny vnější bakteriální membrány MeSH
Current antibiotics and chemotherapeutics are becoming ineffective because pathogenic bacteria and tumor cells have developed multiple drug resistance. Therefore, it is necessary to find new substances that can be used in treatment, either alone or as sensitizing molecules in combination with existing drugs. Peptaibols are bioactive, membrane-active peptides of non-ribosomal origin, mainly produced by filamentous fungi such as Trichoderma spp. This study focused on producing peptaibol-rich extracts from Trichoderma atroviride O1, cultivated on malt extract agar (MA) under circadian and constant darkness conditions for 13 days. Peptaibol production was detected by MALDI-TOF mass spectrometry after six days of cultivation. The extracts demonstrated antibacterial activity against Staphylococcus aureus strains, particularly the methicillin-resistant variant, but not against the Gram-negative Pseudomonas aeruginosa. Quorum sensing interference revealed that a peptaibol-rich extract suppressed Vibrio campbellii BAA-1119's AI-2 signaling system to a degree comparable with gentamycin. Beyond antibacterial properties, the extracts exhibited notable antiproliferative activity against human ovarian cancer cells and their adriamycin-resistant subline in both 2D and 3D models. Specifically, MA-derived extracts reduced ovarian cancer cell viability by 70% at 50 μg/mL, especially under light/dark regime of cultivation. Compared to previously published results for PDA-based extracts, MA cultivation shifted the biological effects of peptaibol-containing extracts toward anticancer potential. These findings support the idea that modifying fungal cultivation parameters, the bioactivity of secondary metabolite mixtures can be tailored for specific therapeutic applications.
- MeSH
- agar * chemie MeSH
- antibakteriální látky * farmakologie metabolismus MeSH
- kultivační média chemie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- nádorové buněčné linie MeSH
- peptaiboly * farmakologie metabolismus biosyntéza chemie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky * farmakologie metabolismus MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- Staphylococcus aureus účinky léků MeSH
- Trichoderma * metabolismus růst a vývoj chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- agar * MeSH
- antibakteriální látky * MeSH
- kultivační média MeSH
- peptaiboly * MeSH
- protinádorové látky * MeSH
The type III secretion system (T3SS) is an important virulence factor of Gram-negative bacteria, including the genus Aeromonas, which represents a diverse group of aquatic bacteria. One member of the genus, Aeromonas schubertii, is an emerging pathogen in aquaculture, causing high mortality in snakehead fish. Infections are associated with the formation of white nodules in the internal organs, likely resulting from A. schubertii-induced apoptosis and/or necrosis. The present study investigates the type strain A. schubertii ATCC 43700, which encodes two distinct T3SSs located within Aeromonas pathogenicity islands 1 and 2, referred here to as API1 and API2. We analyzed their role in A. schubertii-induced cytotoxicity and identified novel T3SS effector proteins. Infections of HeLa cells revealed that API1, but not API2, mediates cytotoxicity and induces both apoptotic and necrotic cell death. Moreover, proteomic analysis identified seven candidate effectors secreted by the API1 injectisome. These included two previously described effectors, AopH and AopO from A. salmonicida, as well as five novel effectors named AopI, AopJ, AopL, AopT, and AopU, whose injection into host cells was validated using a split luciferase reporter system. Functional characterization showed that AopL, a homolog of Vibrio parahaemolyticus VopQ, induces caspase-3/-7-independent necrosis, while AopI, a homolog of ExoY from Pseudomonas aeruginosa, suppresses caspase-3/-7 activation and necrosis, revealing a pro-survival function. These results demonstrate the critical role of the API1 injectisome in A. schubertii-induced cytotoxicity and provide experimental identification of novel Aeromonas effectors that cooperate to fine-tune host cell cytotoxicity.
- Klíčová slova
- Aeromonas, Aeromonas schubertii, ExoY, VopQ, cytotoxicity, type III secretion system effectors,
- MeSH
- Aeromonas * genetika patogenita fyziologie MeSH
- apoptóza MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- faktory virulence * metabolismus genetika MeSH
- gramnegativní bakteriální infekce * mikrobiologie veterinární MeSH
- HeLa buňky MeSH
- lidé MeSH
- nemoci ryb * mikrobiologie MeSH
- sekreční systém typu III * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- faktory virulence * MeSH
- sekreční systém typu III * MeSH
Klebsiella pneumoniae, a Gram-negative bacterium, comprises strains with diverse virulence potentials, ranging from classical to hypervirulent variants. Understanding the genetic basis underlying the virulence disparities between hypervirulent (hvKp) and classical K. pneumoniae (cKp) strains is crucial. hvKp strains are characterized by hypermucoviscosity, attributed to the presence of specific virulence genes and the production of molecules that aid in their ability to survive, evade host immune defenses, and cause infection. In contrast, classical strains exhibit a broader array of antimicrobial resistance determinants, conferring resistance to multiple antibiotics. Although current definitions of hvKp incorporate clinical features, phenotypes, and genotypes, identifying hvKp strains in clinical settings remains challenging. Genomic studies have been pivotal and have helped to identify distinct genetic profiles in hvKp strains, including unique virulence plasmids and chromosomal variations, underscoring the genetic diversity within K. pneumoniae populations. This review examines the virulence and genetic determinants associated with hvKp. The presence of genes defining hypervirulence, alongside considerations of their utility as biomarkers and targets for therapeutic strategies, is discussed, while also providing insight into biofilm formation by hvKp and key questions that need urgent responses in understanding hvKp.
- Klíčová slova
- Klebsiella pneumonia, Antimicrobial resistance, Classical Klebsiella pneumonia, Hypervirulent Klebsiella pneumonia, Virulence factors,
- MeSH
- antibakteriální látky farmakologie MeSH
- biofilmy růst a vývoj MeSH
- faktory virulence * genetika MeSH
- infekce bakteriemi rodu Klebsiella * mikrobiologie MeSH
- Klebsiella pneumoniae * patogenita genetika účinky léků MeSH
- lidé MeSH
- virulence genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
- faktory virulence * MeSH
Fosfomycin is a well-known antibiotic that exhibits broad-spectrum activity against various bacterial pathogens, including gram-negative strains and some gram-positive strains such as staphylococci. The use of parenteral fosfomycin has been recently revised because the antibiotic has been found to effectively manage serious infections caused by multidrug-resistant pathogens. The occurrence of fosfomycin resistance could threaten the reintroduction of this antibiotic for the treatment of bacterial infections. In this study, a total of 24 fosfomycin-resistant Escherichia coli isolates obtained from urine samples were used to investigate the prevalence and molecular epidemiology of plasmid-mediated fosfomycin resistance genes. The replication origins of the conjugative and transformant plasmids obtained from the isolates were examined using the replication origin determination method based on the polymerase chain reaction (PCR). Through the PCR process performed with the fosA, fosA3, fosB, fosC, fosC2, and fosX genes to determine fosfomycin resistance, one out of 24 samples was found to be fosA3 gene-positive. A Class-1 integron gene was detected in three fosfomycin-resistant E. coli isolates, while no Class-2 integrons were detected in any isolate. The conjugation experiments demonstrated that the fosA3 gene was transferable in one isolate that also carried the blaTEM, blaCTX-M-15, and aac(6')-ib-cr genes. Through plasmid isolation in the transconjugant E. coli isolates, it was determined that the E. coli isolate FF21 carried fosfomycin resistance on the plasmid. To ensure the continued effective use of fosfomycin as a treatment option, fosfomycin resistance needs to be detected and closely monitored. Given the global rise in plasmid-transmissible genes, we anticipate a growing resistance to fosfomycin in the near future.
- Klíčová slova
- Escherichia coli, Antimicrobial resistance, FosA3, Fosfomycin, IncF, IncL/M,
- Publikační typ
- časopisecké články MeSH
Helminthic host defense peptides (HDP) are pleiotropic, multifunctional effector molecules of helminth immunity, efficient against Gram-negative and Gram-positive bacteria. Among them, anisaxin-2S (A-2S), membranolytic cecropin-like HDPs produced by the zoonotic nematodes of the genus Anisakis, shows remarkable efficacy even against multidrug-resistant Gram-negative bacteria, yet its immunomodulatory, antiproliferative and antiviral properties have not been elucidated. Therefore, we tested A-2S immunomodulation in the common carp (Cyprinus carpio) blood cells exposed to two pathogens, the zoonotic bacterium Aeromonas hydrophila and the fish parasite Sphaerospora molnari, and in carp in vivo challenged with the parasite. Furthermore, the A-2S antiproliferative activity was tested in vitro in human bladder and lung cancer cell line, while the antiviral protection was tested in common carp brain cell culture exposed to carp rhabdovirus, alloherpesvirus and paramyxovirus, and in a human immortalized myelogenous leukemia cell line infected with tick-borne encephalitis virus. A-2S exerts an immunostimulatory effect on fish blood cells through upregulation of cytokine expression, with the proinflammatory or anti-inflammatory repertoire conditioned by the presence or absence of co-stimulatory antigen. Surprisingly, in the majority of assays conducted, red blood cells demonstrate equal or even stronger regulation of innate immunity genes compared to white blood cells, along with a more extensive repertoire of differentially expressed markers. In contrast, A-2S has only a limited anticancer activity in human bladder cancer and lung adenocarcinoma cells and limited antiviral activity against the three fish viruses and a human tick-borne encephalitis virus. This study provides the first evidence of red blood cell and platelet immunomodulation by an antimicrobial peptide and highlights the induction of a cytokine repertoire. However, future research should address the study's limitations, including the need for longer in vitro assays (e.g., 3-4 days), testing different white blood cell lineages, to better understand antigen-processing interactions, and evaluating the anticipated adaptive immune response. Powerful antimicrobial activity of A-2S, coupled with immunostimulatory properties, warrant further pursuing of preclinical trials with this anisaxin.
- Klíčová slova
- anisaxin, antimicrobial peptide, immunomodulation, red blood cells, white blood cells,
- MeSH
- antivirové látky * farmakologie MeSH
- cekropiny * farmakologie MeSH
- imunologické faktory * farmakologie MeSH
- imunomodulace MeSH
- kapři * imunologie parazitologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nemoci ryb * imunologie MeSH
- proliferace buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky * MeSH
- cekropiny * MeSH
- imunologické faktory * MeSH
Escherichia coli (E. coli) is a rod-shaped gram-negative bacterium that includes the diarrheagenic strains, an identical group of intestinal pathogens.E. coli diarrhea is transmitted through the feco-oral route, through contaminated food and water. Enteropathogenic E. coli (EPEC) is one of the leading causes of diarrhea in the pediatric age group in developing and developed countries. Depending on the absence or presence of E. coli adherence factor plasmids, they are classified as typical or atypical isolates. The distinguishing feature of EPEC's pathology is the attaching and effacing lesions, which facilitate localized damage by tightly adhering to intestinal epithelial cells, disarranging their surfaces, and effacing microvilli. Typical EPEC possess the locus of enterocyte effacement (LEE), a pathogenicity island, encoding adherence factors, including the Type III Secretion System (T3SS), a needle-like structure injecting effector proteins into host cells. EPEC also have other effector genes like cif or nleC encoded by non-LEE pathogenicity islands, which enable destruction of tight junctions in the host cell. Another key virulence factor is bundle-forming pili (BFP), which aids in the first attachment to enterocytes. Methods like quantitative PCR exist to diagnose EPEC accurately. As of today, no licensed vaccine exists to prevent EPEC infections. Virulence factors for attachment, such as bfpA and intimin, and immunogenic carriers can be potential candidates for vaccine development. Moreover, studies are required to better understand the interaction of EPECwith the intestinal microbiome and immune evasion strategies. This article is aimed at providing a comprehensive review of the epidemiology, transmission, virulence factors, challenges in studying EPEC virulence factors, pathogenesis, host-pathogen interaction, mechanism of intestinal injury, diagnosis, treatment, antibiotic resistance, and vaccination strategy for EPEC, and future research implications. We conducted a comprehensive literature search using credible sources such as PubMed, Google Scholar, and Scopus. We refined our keywords, applied database filters, and assessed citations in the included studies. No meta-analysis, statistical aggregation, or formal evaluation of risk bias was carried out as this review consolidates the literature narratively. High-quality English articles published in reputable peer-reviewed journals from 2010 to 2025 were analyzed, and their findings have been summarized in this comprehensive review.
- Klíčová slova
- a/e lesion, intestinal injury, locus of enterocyte effacement (lee), type iii secretion system (t3ss), virulence factor,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND AND AIM: Vibrio parahaemolyticus a gram-negative, rod-shaped bacterium with salinophilic properties is found mainly in rivers, oceans, and coastal environments. With the expanding scale of aquaculture in coastal regions of China, the contamination of seafoods with Vibrio parahaemolyticus is becoming a significant cause of food poisoning with symptoms including gastroenteritis, wound infection and sepsis. Current methods for detecting this microorganism are unsuitable in the present context. We developed a rapid LAMP-LFD method-by combining the loop-mediated isothermal amplification technique (LAMP) and lateral flow device (LFD). METHODS: The thermolabile hemolysin tlh gene of Vibrio parahaemolyticus was used as the target, and we designed five specific primers in its conserved region. The primers were used to carry LAMP reaction with biotin labelling, the products completed hybridisation with the FAM-labelled primers, and the hybridisation products were tested for results on LFD. RESULTS: The results showed that the LAMP-LFD method specifically detected Vibrio parahaemolyticus and was negative for proximate strains such as Vibrio vulnificus and other Vibrio pathogens as well as common pathogens such as Escherichia coli. The optimised reaction conditions for LAMP were 40 min at 60 °C, plus 5 min of probe hybridisation and 3-5 min of LFD color development. The lowest concentration of Vibrio parahaemolyticus pure culture bacterial fluid of 1.5×102 cfu/mL could be detected, and the pathogen could be detected from tissue samples with a contamination concentration of 0.75×103 cfu/mL. The method has higher specificity and sensitivity, and the pathogen can be detected within 1.5 h. CONCLUSION: The LAMP-LFD method for Vibrio parahaemolyticus established in this study has the advantages of convenient operation, low dependence on equipment, high sensitivity and rapid detection, all of make it ideally suited to the detection of Vibrio parahaemolyticus at the grass-roots level.
- Klíčová slova
- LFD, Vibrio parahaemolyticus, loop-mediated isothermal amplification, tlh gene,
- Publikační typ
- časopisecké články MeSH
Background/Objectives: The COVID-19 pandemic has significantly increased the burden of ventilator-associated pneumonia (VAP) in intensive care units (ICUs) globally. However, epidemiological data on VAP in Slovak ICUs, particularly in the context of the pandemic, remain limited. This study aimed to evaluate the incidence, microbial profiles, and risk factors of VAP in Slovak ICU settings, particularly during the COVID-19 pandemic. Methods: A retrospective analysis of VAP data was conducted for respiratory intensive care unit (ICU) patients in a Slovak university hospital, comparing data from the pre-pandemic and pandemic periods. The CDC/NHSN definitions for VAP were applied, and statistical analyses were performed using STATISTICA 13.1. Results: A total of 803 patients were analyzed, representing 8385 bed days and 5836 mechanical ventilator days. VAP rates increased significantly during the pandemic by 111%, from 8.46 to 17.86 events per 1000 MV days (p < 0.001). VAP rates in non-COVID-19 patients increased by 86% during the pandemic compared to pre-pandemic levels. Pandemic conditions also increased ICU mortality from 25.66% to 40.52% (p < 0.001). VAP was identified as a critical determinant of ICU mortality, contributing to a 21.62% higher mortality rate among patients during the pandemic. Younger age, prolonged mechanical ventilation, and medical (vs. surgical) hospitalizations were associated with higher VAP incidence. Gram-negative bacteria dominated the pathogen profiles, with significant increases observed in Pseudomonas aeruginosa (183%), Klebsiella pneumoniae (150%), and Acinetobacter spp. (100%). Conclusions: The COVID-19 pandemic has significantly affected the incidence and epidemiology of VAP in Slovak ICUs, highlighting systemic vulnerabilities in HAI surveillance and IPC practices.
- Klíčová slova
- COVID-19, epidemiology, healthcare-associated infection, risk factors, surveillance, ventilator-associated pneumonia,
- Publikační typ
- časopisecké články MeSH