Nejvíce citovaný článek - PubMed ID 10712682
Bordetella pertussis is a Gram-negative, strictly human re-emerging respiratory pathogen and the causative agent of whooping cough. Similar to other Gram-negative pathogens, B. pertussis produces the type III secretion system, but its role in the pathogenesis of B. pertussis is enigmatic and yet to be elucidated. Here, we combined RNA-seq, LC-MS/MS, and co-immunoprecipitation techniques to identify and characterize the novel CesT family T3SS chaperone BP2265. We show that this chaperone specifically interacts with the secreted T3SS regulator BtrA and represents the first non-flagellar chaperone required for the secretion of an anti-sigma factor. In its absence, secretion but not production of BtrA and most T3SS substrates is severely impaired. It appears that the role of BtrA in regulating T3SS extends beyond its activity as an antagonist of the sigma factor BtrS. Predictions made by artificial intelligence system AlphaFold support the chaperone function of BP2265 towards BtrA and outline the structural basis for the interaction of BtrA with its target BtrS. We propose to rename BP2265 to BtcB for the Bordetella type III chaperone of BtrA.In addition, the absence of the BtcB chaperone results in increased expression of numerous flagellar genes and several virulence genes. While increased production of flagellar proteins and intimin BipA translated into increased biofilm formation by the mutant, enhanced production of virulence factors resulted in increased cytotoxicity towards human macrophages. We hypothesize that these phenotypic traits result indirectly from impaired secretion of BtrA and altered activity of the BtrA/BtrS regulatory node.
- Klíčová slova
- Bordetella pertussis, CesT chaperone, T3SS, anti-sigma factor, biofilm,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Bordetella pertussis * metabolismus MeSH
- chromatografie kapalinová MeSH
- lidé MeSH
- pertuse * MeSH
- regulace genové exprese u bakterií MeSH
- sigma faktor genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- sigma faktor MeSH
The classical Bordetella species infect the respiratory tract of mammals. While B. bronchiseptica causes rather chronic respiratory infections in a variety of mammals, the human-adapted species B. pertussis and B. parapertussisHU cause an acute respiratory disease known as whooping cough or pertussis. The virulence factors include a type III secretion system (T3SS) that translocates effectors BteA and BopN into host cells. However, the regulatory mechanisms underlying the secretion and translocation activity of T3SS in bordetellae are largely unknown. We have solved the crystal structure of BopN of B. pertussis and show that it is similar to the structures of gatekeepers that control access to the T3SS channel from the bacterial cytoplasm. We further found that BopN accumulates at the cell periphery at physiological concentrations of calcium ions (2 mM) that inhibit the secretion of BteA and BopN. Deletion of the bopN gene in B. bronchiseptica increased secretion of the BteA effector into calcium-rich medium but had no effect on secretion of the T3SS translocon components BopD and BopB. Moreover, the ΔbopN mutant secreted approximately 10-fold higher amounts of BteA into the medium of infected cells than the wild-type bacteria, but it translocated lower amounts of BteA into the host cell cytoplasm. These data demonstrate that BopN is a Bordetella T3SS gatekeeper required for regulated and targeted translocation of the BteA effector through the T3SS injectisome into host cells. IMPORTANCE The T3SS is utilized by many Gram-negative bacteria to deliver effector proteins from bacterial cytosol directly into infected host cell cytoplasm in a regulated and targeted manner. Pathogenic bordetellae use the T3SS to inject the BteA and BopN proteins into infected cells and upregulate the production of the anti-inflammatory cytokine interleukin-10 (IL-10) to evade host immunity. Previous studies proposed that BopN acted as an effector in host cells. In this study, we report that BopN is a T3SS gatekeeper that regulates the secretion and translocation activity of Bordetella T3SS.
- Klíčová slova
- BopN, Bordetella, gatekeeper, type III secretion system,
- MeSH
- bakteriální proteiny metabolismus MeSH
- Bordetella pertussis metabolismus MeSH
- faktory virulence metabolismus MeSH
- lidé MeSH
- pertuse * MeSH
- savci MeSH
- sekreční systém typu III * metabolismus MeSH
- vápník MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- faktory virulence MeSH
- sekreční systém typu III * MeSH
- vápník MeSH
Bacterial pathogens sense specific cues associated with different host niches and integrate these signals to appropriately adjust the global gene expression. Bordetella pertussis is a Gram-negative, strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Though B. pertussis does not cause invasive infections, previous results indicated that this reemerging pathogen responds to blood exposure. Here, omics RNA-seq and LC-MS/MS techniques were applied to determine the blood-responsive regulon of B. pertussis. These analyses revealed that direct contact with blood rewired global gene expression profiles in B. pertussis as the expression of almost 20% of all genes was significantly modulated. However, upon loss of contact with blood, the majority of blood-specific effects vanished, with the exception of several genes encoding the T3SS-secreted substrates. For the first time, the T3SS regulator BtrA was identified in culture supernatants of B. pertussis. Furthermore, proteomic analysis identified BP2259 protein as a novel secreted T3SS substrate, which is required for T3SS functionality. Collectively, presented data indicate that contact with blood represents an important cue for B. pertussis cells.
- Klíčová slova
- Bordetella pertussis, T3SS, blood exposure, gene expression, omics analyses, protein secretion,
- MeSH
- anotace sekvence MeSH
- bakteriální proteiny metabolismus MeSH
- Bordetella pertussis fyziologie MeSH
- chromatografie kapalinová MeSH
- faktory virulence MeSH
- genomika * metody MeSH
- lidé MeSH
- proteomika * metody MeSH
- regulace genové exprese u bakterií MeSH
- sekreční systém typu III genetika metabolismus MeSH
- stanovení celkové genové exprese MeSH
- tandemová hmotnostní spektrometrie MeSH
- transkriptom MeSH
- virulence MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- faktory virulence MeSH
- sekreční systém typu III MeSH
Pertussis, also known as whooping cough, is a resurging acute respiratory disease of humans primarily caused by the Gram-negative coccobacilli Bordetella pertussis, and less commonly by the human-adapted lineage of B. parapertussisHU. The ovine-adapted lineage of B. parapertussisOV infects only sheep, while B. bronchiseptica causes chronic and often asymptomatic respiratory infections in a broad range of mammals but rarely in humans. A largely overlapping set of virulence factors inflicts the pathogenicity of these bordetellae. Their genomes also harbor a pathogenicity island, named bsc locus, that encodes components of the type III secretion injectosome, and adjacent btr locus with the type III regulatory proteins. The Bsc injectosome of bordetellae translocates the cytotoxic BteA effector protein, also referred to as BopC, into the cells of the mammalian hosts. While the role of type III secretion activity in the persistent colonization of the lower respiratory tract by B. bronchiseptica is well recognized, the functionality of the type III secretion injectosome in B. pertussis was overlooked for many years due to the adaptation of laboratory-passaged B. pertussis strains. This review highlights the current knowledge of the type III secretion system in the so-called classical Bordetella species, comprising B. pertussis, B. parapertussis, and B. bronchiseptica, and discusses its functional divergence. Comparison with other well-studied bacterial injectosomes, regulation of the type III secretion on the transcriptional and post-transcriptional level, and activities of BteA effector protein and BopN protein, homologous to the type III secretion gatekeepers, are addressed.
- Klíčová slova
- BopN, Bordetella, BteA/BopC, effector protein, pertussis, type III secretion system,
- MeSH
- bakteriální proteiny genetika MeSH
- Bordetella bronchiseptica * MeSH
- Bordetella pertussis genetika MeSH
- faktory virulence genetika MeSH
- infekce bakteriemi rodu Bordetella * MeSH
- ovce MeSH
- sekreční systém typu III genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny MeSH
- faktory virulence MeSH
- sekreční systém typu III MeSH
Bordetella bronchiseptica and Bordetella pertussis are closely related respiratory pathogens that evolved from a common bacterial ancestor. While B. bronchiseptica has an environmental reservoir and mostly establishes chronic infections in a broad range of mammals, B. pertussis is a human-specific pathogen causing acute pulmonary pertussis in infants and whooping cough illness in older humans. Both species employ a type III secretion system (T3SS) to inject a cytotoxic BteA effector protein into host cells. However, compared to the high BteA-mediated cytotoxicity of B. bronchiseptica, the cytotoxicity induced by B. pertussis BteA (Bp BteA) appears to be quite low and this has been attributed to the reduced T3SS gene expression in B. pertussis. We show that the presence of an alanine residue inserted at position 503 (A503) of Bp BteA accounts for its strongly attenuated cytotoxic potency. The deletion of A503 from Bp BteA greatly enhanced the cytotoxic activity of B. pertussis B1917 on mammalian HeLa cells and expression of Bp BteAΔA503 was highly toxic to Saccharomyces cerevisiae cells. Vice versa, insertion of A503 into B. bronchiseptica BteA (Bb BteA) strongly decreased its cytotoxicity to yeast and HeLa cells. Moreover, the production of Bp BteAΔA503 increased virulence of B. pertussis B1917 in the mouse model of intranasal infection (reduced LD50) but yielded less inflammatory pathology in infected mouse lungs at sublethal infectious doses. This suggests that A503 insertion in the T3SS effector Bp BteA may represent an evolutionary adaptation that fine-tunes B. pertussis virulence and host immune response.
- MeSH
- alanin genetika metabolismus MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Bordetella pertussis fyziologie MeSH
- HeLa buňky MeSH
- lidé MeSH
- mutace MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- pertuse genetika mikrobiologie patologie MeSH
- regulace genové exprese u bakterií * MeSH
- sekreční systém typu III genetika metabolismus MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alanin MeSH
- bakteriální proteiny MeSH
- sekreční systém typu III MeSH
Adenylate cyclase toxin (CyaA) is released in the course of B. pertussis infection in the host's respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC), macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3',5'-cyclic adenosine monophosphate (cAMP), which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.
- Klíčová slova
- T-helper cells, immune response, intracellular pathways, phagocytosis,
- MeSH
- adenylátcyklasový toxin imunologie MeSH
- AMP cyklický chemie MeSH
- Bordetella pertussis MeSH
- buněčná imunita MeSH
- dendritické buňky imunologie MeSH
- dýchací soustava imunologie mikrobiologie MeSH
- fagocytóza MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- makrofágy imunologie MeSH
- neutrofily imunologie MeSH
- pertuse imunologie MeSH
- regulační T-lymfocyty imunologie MeSH
- signální transdukce MeSH
- slizniční imunita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- adenylátcyklasový toxin MeSH
- AMP cyklický MeSH
Bordetella pertussis, the causative agent of human whooping cough (pertussis) produces a complex array of virulence factors in order to establish efficient infection in the host. The RNA chaperone Hfq and small regulatory RNAs are key players in posttranscriptional regulation in bacteria and have been shown to play an essential role in virulence of a broad spectrum of bacterial pathogens. This study represents the first attempt to characterize the Hfq regulon of the human pathogen B. pertussis under laboratory conditions as well as upon passage in the host and indicates that loss of Hfq has a profound effect on gene expression in B. pertussis. Comparative transcriptional profiling revealed that Hfq is required for expression of several virulence factors in B. pertussis cells including the Type III secretion system (T3SS). In striking contrast to the wt strain, T3SS did not become operational in the hfq mutant passaged either through mice or macrophages thereby proving that Hfq is required for the functionality of the B. pertussis T3SS. Likewise, expression of virulence factors vag8 and tcfA encoding autotransporter and tracheal colonization factor, respectively, was strongly reduced in the hfq mutant. Importantly, for the first time we demonstrate that B. pertussis T3SS can be activated upon contact with macrophage cells in vitro.
- Klíčová slova
- ABC protein, ATP-binding cassette protein, Bsp22, CFU, colony forming unit, Hfq, OMP, outer membrane protein, P, P-value, RT-qPCR, quantitative reverse transcription polymerase chain reaction, SS medium, Steiner-Scholte medium, T3SS, T3SS, Type III secretion system, infection, transcriptomics, virulence, wt, wild-type,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- bakteriální RNA genetika metabolismus MeSH
- Bordetella pertussis genetika metabolismus patogenita MeSH
- buněčné linie MeSH
- faktory virulence rodu Bordetella genetika metabolismus MeSH
- infekce bakteriemi rodu Bordetella mikrobiologie MeSH
- interakce hostitele a patogenu MeSH
- makrofágy metabolismus mikrobiologie MeSH
- myši MeSH
- protein hostitelského faktoru 1 nedostatek genetika MeSH
- regulace genové exprese u bakterií * MeSH
- regulon MeSH
- sekreční systém typu III genetika metabolismus MeSH
- sekreční systém typu V genetika metabolismus MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- bakteriální RNA MeSH
- faktory virulence rodu Bordetella MeSH
- protein hostitelského faktoru 1 MeSH
- sekreční systém typu III MeSH
- sekreční systém typu V MeSH
- tracheal colonization factor, Bordetella pertussis MeSH Prohlížeč
The type III secretion system (T3SS) of pathogenic bordetellae employs a self-associating tip complex protein Bsp22. This protein is immunogenic during infections by Bordetella bronchiseptica and could be used as a protective antigen to immunize mice against B. bronchiseptica challenge. Since low-passage clinical isolates of the human pathogen Bordetella pertussis produce a highly homologous Bsp22 protein (97% homology), we examined its vaccine and diagnostic potential. No Bsp22-specific antibodies were, however, detected in serum samples from 36 patients with clinically and serologically confirmed whooping cough disease (pertussis syndrome). Moreover, although the induction of Bsp22 secretion by the laboratory-adapted 18323 strain in the course of mice lung infection was observed, the B. pertussis 18323-infected mice did not mount any detectable serum antibody response against Bsp22. Furthermore, immunization with recombinant Bsp22 protein yielded induction of high Bsp22-specific serum antibody titers but did not protect mice against an intranasal challenge with B. pertussis 18323. Unlike for B. bronchiseptica, hence, the Bsp22 protein is nonimmunogenic, and/or the serum antibody response to it is suppressed, during B. pertussis infections of humans and mice.
- MeSH
- antigeny bakteriální imunologie MeSH
- bakteriální proteiny imunologie MeSH
- Bordetella pertussis imunologie MeSH
- ELISA MeSH
- infekce bakteriemi rodu Bordetella imunologie MeSH
- lidé MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- pertuse imunologie MeSH
- protilátky bakteriální krev imunologie MeSH
- tvorba protilátek imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny bakteriální MeSH
- bakteriální proteiny MeSH
- protilátky bakteriální MeSH