Grassland conservation Dotaz Zobrazit nápovědu
The economic management of lignocellulosic biomass from semi-natural grasslands is now a challenge across Europe. The abandonment of mowing these grasslands leads to the gradual degradation of these ecosystems. This study investigates how chemical and biological factors affect the suitability of biomass from abandoned grasslands for biogas production. We sampled 30 mown and 30 abandoned grassland sites in the Sudetes Mountains (Poland and Czechia). The cover contribution of short herbs was found to be significantly higher in mown grasslands (p < 0.001), while that of tall herbs was more prevalent in abandoned grasslands (p < 0.01). The specific biogas yield (SBY, NL kg-1 volatile solids) is negatively affected by an increased percentage of herbs in the biomass of mown and abandoned grasslands. This is due to the inhibitory effect of herbs on biodegradation, the increase in lignin content and the decrease in cellulose. This study highlights the importance of individual plant species in assessing grassland biomass for area biogas yield (ABY, m3 ha-1) and provides new insights into a field that has not yet been extensively investigated. In mown grasslands, ABY was most positively correlated with grass species (Arrhenatherum elatius, Trisetum flavescens and Festuca pratensis). In abandoned grasslands, the ABY was most correlated with herbaceous species (Galium aparine, Urtica dioica and Chaerophyllum aromaticum) and grasses (A. elatius and Elymus repens). Mown grasslands had significantly higher species richness (p < 0.001) compared to abandoned grasslands, but the number of species sampled did not correlate with SBY and ABY. This study contributes to the development of a sustainable bio-economy by highlighting the need for efficient use of grassland biomass. This approach helps protect semi-natural ecosystems and facilitates sustainable management of renewable resources.
- Klíčová slova
- Anaerobic digestion, Bioenergy, Biogas plants, Ecosystem services, Grassland conservation, Grassland management, Lignocellulosic biomass, Mesic meadows, Renewable energy,
- MeSH
- biomasa * MeSH
- biopaliva * MeSH
- ekosystém MeSH
- lipnicovité MeSH
- pastviny * MeSH
- zachování přírodních zdrojů * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- biopaliva * MeSH
Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition.
- MeSH
- biodiverzita MeSH
- dusík MeSH
- ekosystém * MeSH
- pastviny * MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
Calcareous fens represent an endangered type of peatlands, acting as refugia for stress-tolerant species in the currently changing landscapes. The resurveys across many regions have reported their recent disappearance or deterioration despite both the extreme habitat conditions (carbonate richness, presence of calcareous tufa, nutrient limitation, high water level) and conservation management. To test the stability of their biotic communities in different environmental and management configurations, we repeatedly sampled molluscs (terrestrial and aquatic), vascular plants, and bryophytes at 30 calcareous fens in the Inner Western Carpathians (Slovakia, Poland) after 13-17 years of warm summers and land-use changes. We found a small yet statistically significant effect of sampling period (old versus new survey) on the species composition of all three groups of organisms when the effect of various positions of sites along ecological gradients was controlled for. The compositional changes, interpreted with the help of Ellenberg Indicator Values, suggest an incipient succession towards grasslands and shrublands, driven by decreasing soil moisture and increasing nutrient availability. Although the number of habitat specialists did not change, the number of matrix-derived vascular plant and bryophyte species significantly increased, with six ubiquitous species of productive habitats being significantly more represented currently, while the richness of aquatic molluscs significantly decreased. Fens in which potentially strongly competitive plant species were less stressed because of less intense management and lower habitat extremity were more prone to such succession. There was no single factor that could predict the magnitude of composition changes; instead, tested factors were found to act synergistically. Conservation management was predominantly important for bryophytes, while extreme habitat conditions were predominantly important for terrestrial snails. We suggested a way how nature conservancy authorities can prioritise the management needs by applying an abiotic indicator system, with less environmentally extreme fens requiring more intense conservation management.
- Klíčová slova
- Calcareous fens, Conservation management, Environmental stress, Global change, Molluscs, Vegetation,
- MeSH
- Bryophyta * MeSH
- ekosystém * MeSH
- půda MeSH
- zachování přírodních zdrojů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
- Slovenská republika MeSH
- Názvy látek
- půda MeSH
DNA metabarcoding provides a scalable alternative to traditional botanical surveys, which are often time-consuming and reliant on taxonomic expertise. Here, we compare DNA metabarcoding with quadrat-based botanical surveys to assess plant species composition in experimental grassland plots under four defoliation regimes (continuous grazing, rotational grazing, frequent cutting and conservation cutting). Botanical surveys identified 16 taxa, while metabarcoding detected 25 taxa, including the dominant species Holcus lanatus and Lolium perenne. Despite detecting more taxa, there were some discrepancies in identification, with the sequence data only able to resolve some taxa at the genus level (e.g., Agrostis spp. instead of Agrostis capillaris) and potential species misidentifications (e.g., Cardaminopsis helleri vs. Cardamine flexuosa). However, both methods provided comparable results and revealed statistically significant differences in species composition between treatments, with higher diversity in cut versus grazed plots. The semi-quantitative nature of metabarcoding limits its capacity to accurately reflect species abundance, posing challenges for ecological interpretations where precise quantification is required. However, it provides a broader view of biodiversity and can complement traditional methods, offering new opportunities for efficient biodiversity monitoring. The findings support the integration of DNA metabarcoding into biodiversity assessments, particularly when used alongside traditional techniques. Further refinement of bioinformatics tools and reference databases will enhance their accuracy and reliability, enabling more effective monitoring of grassland biodiversity and sustainable management practices. This study highlights DNA metabarcoding as a valuable tool for understanding plant community responses to management interventions.
- Klíčová slova
- DNA metabarcoding, botanical survey, ecological monitoring, grassland biodiversity, species composition,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Plant tissue nitrogen (N) and phosphorus (P) and genome traits, such as genome size and guanine-cytosine (GC) content, scale with growth or metabolic rates and are linked to plant ecological strategy spectra. Tissue NP stoichiometry and genome traits are reported to affect plant growth, metabolic rates or ecological strategies in contrasting ways, although the elemental costs for building and maintaining DNA are typically overlooked. METHODS: We formulated stoichiometry- and ecology-based predictions on the relationship between genome size and GC content to tissue N, P and N : P and tested them on a set of 130 herbaceous species from a temperate grassland using ordinary, phylogenetic and quantile regression. KEY RESULTS: Genome size was only negatively linked to plant N and N : P in species with very small genomes. We found no link between genome size and plant P. GC content was negatively linked to plant N and P but we found these significant links consistently in both GC-rich and GC-poor species. Finally, GC content correlated positively with plant N : P but only in species with GC-rich genomes. CONCLUSIONS: Our results provide stronger support for the ecology-based predictions than the stoichiometry-based predictions, and for the links between GC content and plant N and P stoichiometry than for genome size. We argue that the theories of plant metabolic rates and ecological strategies (resource-acquisitive vs. conservative or ruderal vs. stress-tolerator spectra) better explain interspecific genome-NP stoichiometry relationships at the tissue level (although relatively weakly) than the stoichiometric theory based on the elemental costs for building and maintaining DNA.
- Klíčová slova
- GC content, genome size, nitrogen, phosphorus, plant ecological strategies, stoichiogenomics, tissue stoichiometry,
- MeSH
- cytosin metabolismus MeSH
- délka genomu MeSH
- dusík * metabolismus MeSH
- fosfor * metabolismus MeSH
- fylogeneze MeSH
- guanin metabolismus MeSH
- pastviny MeSH
- rostliny metabolismus MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytosin MeSH
- dusík * MeSH
- fosfor * MeSH
- guanin MeSH
Understanding the factors governing grassland biodiversity across different spatial scales is crucial for effective conservation and management. However, most studies focus on single grain sizes, leaving the scale-dependent mechanisms of biodiversity drivers unclear. We investigated how climate, soil properties, abiotic disturbance, and land use influence plant diversity across two fine spatial scales in various grassland types in Ukraine. Using spatially explicit data on plant species presence and their cover, collected at smaller (10 m2) and larger (100 m2) grain sizes, we assessed spatial β-diversity-the variability of biodiversity between scales. We analyzed whether the effects of ecological drivers on β-diversity are mediated by changes in species evenness, density (total cover), and intraspecific aggregation in plant community. In our study, the most influential factors of local plant diversity at both grain sizes were climate variables, followed by soil humus content, litter cover, and soil pH. Soil and litter effects were primarily driven by the response of locally rare species, while climate and grazing effects were driven by locally common species. The strength of most of these effects varied between spatial scales, affecting β-diversity. Soil properties influenced β-diversity through changes in total plant community cover, while the effects of climate and litter operated via changes in species evenness and aggregation. Our findings highlight that biodiversity responses to climate, soil factors, and litter depend on the size of the sampled area and reveal the role of total plant cover, evenness, and aggregation in driving fine-scale β-diversity in grasslands across different habitat types.
- Klíčová slova
- biodiversity, biodiversity drivers, fine spatial scale, grasslands, scale‐dependency, β‐diversity,
- Publikační typ
- časopisecké články MeSH
During the past century, grasslands in Europe have undergone marked changes in land-use, leading to a decline in plant diversity both at local and regional scales, thus possibly also affecting the mechanisms of species sorting into local communities. We studied plant species assembly in grasslands with differing habitat history and hypothesised that trait divergence prevails in historical grasslands due to niche differentiation and trait convergence prevails in more dynamic grasslands due to competitive exclusion and dispersal limitation. We tested these hypotheses in 35 grassland complexes in Estonia, containing neighbouring grassland habitats with different land-use histories: continuously managed open historical grassland, currently overgrown former grassland and young developing grassland. We assessed species assembly patterns in each grassland type for finer scale-a 2 × 2 m plot scale from a local community pool and for broader scale-a local community from the habitat species pool for that grassland stage and observed changes in trait means at finer scale. We found that grasslands with long management history are assembled differently from former grasslands or young developing grasslands. In historical grasslands, divergence or random patterns prevailed at finer scale species assembly while in former or developing grasslands, mostly convergence patterns prevailed. With increasing scale convergence patterns become more prevalent in all grassland types. We conclude that land-use history is an important factor to consider when assessing grassland functional trait assembly, particularly at small scales. Understanding the mechanisms behind species assembly and their relationship with land-use history is vital for habitat conservation and restoration.
- Klíčová slova
- Environmental filtering, Functional diversity, Land-use change, Limiting similarity, Species pool,
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- pastviny * MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Estonsko MeSH
- Evropa MeSH
Many grasslands have disappeared over the last century as a result of anthropogenic land use intensification, while new patches are emerging through abandonment of arable fields. Here, we compared species (SD), functional (FD) and phylogenetic (PD) (alpha) diversity among 272 dry grassland patches of two age-classes: old and new, with the new patches being dry grasslands established on previous intensively managed fields during the last 30 years. We first compared SD, FD and PD, between patches of different age. Then, we performed generalized linear models to determine the influence of abiotic, present-day and historical landscape configuration variables on SD, FD and PD. By measuring abiotic variables, we explained the effect of environmental filtering on species diversity, whereas the present-day and historical landscape configuration variables were included to describe how the spatial and temporal configuration of the patches influence patterns of species. Finally, we applied partial regressions to explore the relative importance of abiotic, present-day and historical variables in explaining the diversity metrics and how this varies between patches of different ages. We found higher SD in the old compared to the new patches, but no changes in FD and PD. SD was mostly affected by abiotic and present-day landscape configuration variables in the new and the old patches, respectively. In the new patches, historical variables explained variation in the FD, while present-day variables explained the PD. In the old patches, historical variables accounted for most of the variation in both FD and PD. Our evidence suggests that the relative importance of assembly processes has changed over time, showing that environmental filtering and changes in the landscape configuration prevented the establishment of species in the new patches. However, the loss of species (i.e. SD) is not necessarily linked to a loss of functions and evolutionary potential.
Mediterranean pastures are experiencing strong changes in management, involving shifts from sheep to cattle-based livestock systems. The impacts of such shifts on biodiversity are still poorly understood. Here, we sought to contrast the grazing regime, vegetation structure, bird species richness and abundance, between sheep and cattle grazed parcels, to understand the mechanisms through which management decisions impact farmland birds. During spring 2019, we characterized livestock management, bird populations and sward structure in 23 cattle and 27 sheep grazed parcels. We used a Structural Equation Model to infer the direct and indirect effects of sheep and cattle grazing on birds. Although no effects were found on overall species richness, there were species-specific responses to sheep and cattle grazed systems. Grazing pressure (variable integrating stocking rate and the number of days in the parcel) had negative impacts on the prevalence/abundance of Zitting Cisticola, Corn Bunting and Little Bustard, either directly or indirectly, through the effects of grazing pressure on vegetation height. Animal density and vegetation cover had direct positive effects in Galerida spp. and Common Quail, respectively. Zitting Cisticola and Little Bustard also showed a direct response to livestock type. Our study emphasizes the importance of grazing pressure as a driver of negative impacts for bird populations in Mediterranean grasslands. Since the ongoing transition from sheep to cattle-based systems involves increases in stocking rate, and therefore potentially higher grazing pressure, we propose a policy change to cap the maximum allowed grazing pressure. At the landscape scale, a mix of sheep and cattle grazed fields would be beneficial for maintaining bird diversity.
- MeSH
- biodiverzita MeSH
- býložravci MeSH
- dobytek klasifikace růst a vývoj MeSH
- ovce MeSH
- pastviny MeSH
- ptáci klasifikace růst a vývoj MeSH
- skot MeSH
- teoretické modely MeSH
- zachování přírodních zdrojů MeSH
- zemědělství metody MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Středomoří MeSH
BACKGROUND AND AIMS: Climate change, particularly the increased frequency of extreme climatic events, poses significant challenges to the biodiversity and functionality of semi-natural grasslands. However, the response of plant functional traits of grassland communities to climate extremes is still an unresolved issue. Using data from a long-term experiment, we aimed to characterize the functional response of a grassland community to simultaneous long-term effects of grazing and climate extremes. METHODS: For over a 20-year period, we monitored the species composition of grazed and ungrazed grassland plots. We measured functional traits defining the Leaf Economics Spectrum (LES) and the Hydraulic Safety-Efficiency (HSE) trade-offs, and we identified the temporal dynamics of single traits at the community level as well as the changes in functional strategies among grazed and ungrazed communities. Then, we assessed the role of climatic extremes in driving the changes in functional composition. KEY RESULTS: Grazed plots, in the first few years, were dominated by fast-growing species with more acquisitive strategies compared to ungrazed plots. However, both communities showed a reorganization in the functional structure over time, pointing towards a selection of trait combinations favoring more conservative, stress-tolerant strategies. The joint effect of grazing and climate extremes significantly altered the functional composition of the grazed community, leading to a shift from species with grazing-tolerant traits to species with grazing-avoidant, and drought-tolerant, traits. CONCLUSIONS: We found that grazing pressure generally promoted functional diversity but led to rapid shifts in community composition when combined with prolonged drought events. In contrast, the ungrazed community, dominated by species with conservative resource-use strategies, showed more stable functional richness and divergence, as well as a reduced sensitivity to climatic extremes. These results underscore the importance of carefully evaluating grazing in the context of climate change, particularly to guide restoration and conservation efforts.
- Klíčová slova
- Calcareous grasslands, climate extreme events, community weighted means, drought, functional diversity, grazing, heatwaves, herbaceous plants, temporal dynamics, woody plants,
- Publikační typ
- časopisecké články MeSH