Hematopoiesis Dotaz Zobrazit nápovědu
- Klíčová slova
- HEMATOPOIESIS *, LIVER/embryology *,
- MeSH
- hematopoéza * MeSH
- játra embryologie MeSH
- krysa rodu Rattus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The review summarizes data evaluating the role of adenosine receptor signaling in murine hematopoietic functions. The studies carried out utilized either non-selective activation of adenosine receptors induced by elevation of extracellular adenosine or by administration of synthetic adenosine analogs having various proportions of selectivity for a particular receptor. Numerous studies have described stimulatory effects of non-selective activation of adenosine receptors, manifested as enhancement of proliferation of cells at various levels of the hematopoietic hierarchy. Subsequent experimental approaches, considering the hematopoiesis-modulating action of adenosine receptor agonists with a high level of selectivity to individual adenosine receptor subtypes, have revealed differential effects of various adenosine analogs. Whereas selective activation of A₁ receptors has resulted in suppression of proliferation of hematopoietic progenitor and precursor cells, that of A₃ receptors has led to stimulated cell proliferation in these cell compartments. Thus, A₁ and A₃ receptors have been found to play a homeostatic role in suppressed and regenerating hematopoiesis. Selective activation of adenosine A₃ receptors has been found to act curatively under conditions of drug- and radiation-induced myelosuppression. The findings in these and further research areas will be summarized and mechanisms of hematopoiesis-modulating action of adenosine receptor agonists will be discussed.
- MeSH
- hematopoéza účinky léků MeSH
- lidé MeSH
- purinergní receptory P1 účinky léků MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- purinergní receptory P1 MeSH
Circular RNAs (circRNAs) constitute a recently recognized group of noncoding transcripts that function as posttranscriptional regulators of gene expression at a new level. Recent developments in experimental methods together with rapidly evolving bioinformatics approaches have accelerated the exploration of circRNAs. The differentiation of hematopoietic stem cells into a broad spectrum of specialized blood lineages is a tightly regulated process that depends on a multitude of factors, including circRNAs. However, despite the growing number of circRNAs described to date, the roles of the majority of them in hematopoiesis remain unknown. Given their stability and disease-specific expression, circRNAs have been acknowledged as novel promising biomarkers and therapeutic targets. In this paper, the biogenesis, characteristics, and roles of circRNAs are reviewed with an emphasis on their currently recognized or presumed involvement in hematopoiesis, especially in acute myeloid leukemia and myelodysplastic syndrome.
- Klíčová slova
- acute myeloid leukemia, circular RNAs, hematopoiesis, myelodysplastic syndrome,
- MeSH
- akutní myeloidní leukemie krev genetika MeSH
- hematopoéza * MeSH
- kruhová RNA krev genetika MeSH
- lidé MeSH
- myelodysplastické syndromy krev genetika MeSH
- nádorové biomarkery krev genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kruhová RNA MeSH
- nádorové biomarkery MeSH
AIMS: MicroRNAs of the miR-29 family members were one of the first microRNAs identified as possible therapeutic agents in malignant hematopoiesis. The aim of our review is to summarize the current state of knowledge on miR-29 family members. METHODS: We performed literature searches involving miR-29 family members and their relationship to individual hematological malignancies, namely acute myeloid leukemia (AML), chronic lymphoblastic leukemia (CLL) and chronic myeloid leukemia (CML). We also searched for subgroups of hematological malignancies, e.g. multiple myeloma, that are regarded as members of the acute or chronic types of leukemias. RESULTS: A number of genes appear to be regulated by miR-29 family members in various physiological and pathological situations. In our view regulation of Tcl-1, Mcl-1 and DNA methyltransferases is relevant in case of hematological malignancies, hence these are the focus of this review. miR-29 family members also function during normal T-cell and B-cell development. CONCLUSION: MiR-29 family members appear to govern some general features in commonly heterogenous hematological malignancies and therefore form a potential target for treatment.
- MeSH
- hematologické nádory genetika MeSH
- hematopoéza genetika MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA MeSH
- MIRN29a microRNA, human MeSH Prohlížeč
Prostaglandins and inhibitors of their synthesis (cyclooxygenase (COX) inhibitors, non-steroidal anti-inflammatory drugs) were shown to play a significant role in the regulation of hematopoiesis. Partly due to their hematopoiesis-modulating effects, both prostaglandins and COX inhibitors were reported to act positively in radiation-exposed mammalian organisms at various pre- and post-irradiation therapeutical settings. Experimental efforts were targeted at finding pharmacological procedures leading to optimization of therapeutical outcomes by minimizing undesirable side effects of the treatments. Progress in these efforts was obtained after discovery of selective inhibitors of inducible selective cyclooxygenase-2 (COX-2) inhibitors. Recent studies have been able to suggest the possibility to find combined therapeutical approaches utilizing joint administration of prostaglandins and inhibitors of their synthesis at optimized timing and dosing of the drugs which could be incorporated into the therapy of patients with acute radiation syndrome.
- Klíčová slova
- acute radiation syndrome, cyclooxygenase, gastrointestinal system, hematopoiesis, inhibitors of prostaglandin synthesis, prostaglandins,
- MeSH
- akutní radiační syndrom krev farmakoterapie etiologie metabolismus MeSH
- cyklooxygenasa 1 metabolismus MeSH
- cyklooxygenasa 2 metabolismus MeSH
- hematopoéza účinky léků MeSH
- inhibitory cyklooxygenasy 2 farmakologie terapeutické užití MeSH
- lidé MeSH
- metabolické sítě a dráhy účinky léků MeSH
- modely nemocí na zvířatech MeSH
- prostaglandiny biosyntéza farmakologie MeSH
- radioprotektivní látky farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cyklooxygenasa 1 MeSH
- cyklooxygenasa 2 MeSH
- inhibitory cyklooxygenasy 2 MeSH
- prostaglandiny MeSH
- radioprotektivní látky MeSH
In bone marrow transplantation (BMT), hematopoiesis-reconstituting cells are introduced following myeloablative treatment, which eradicates existing hematopoietic cells and disrupts stroma within the hematopoietic tissue. Both hematopoietic cells and stroma then undergo regeneration. Our study compares the outcomes of a second BMT administered to mice shortly after myeloablative treatment and the first BMT, with those of a second BMT administered to mice experiencing robust hematopoietic regeneration after the initial transplant. We evaluated the efficacy of the second BMT in terms of engraftment efficiency, types of generated blood cells, and longevity of function. Our findings show that regenerating hematopoiesis readily accommodates newly transplanted stem cells, including those endowed with a robust capacity for generating B and T cells. Importantly, our investigation uncovered a window for preferential engraftment of transplanted stem cells coinciding with the resumption of blood cell production. Repeated BMT could intensify hematopoiesis reconstitution and enable therapeutic administration of genetically modified autologous stem cells.
- Klíčová slova
- B cells, T cells, hematopoiesis, immune system, regeneration, stem cell, transplantation,
- MeSH
- hematopoetické kmenové buňky imunologie MeSH
- hematopoéza * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- regenerace MeSH
- rekonstituce imunitních funkcí MeSH
- transplantace kostní dřeně * metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
β-glucans are cell wall constituents of bacteria, yeast, fungi, and plants. They are not expressed in mammalian cells, but they are recognized by mammalian cells as pathogen-associated molecular patterns by pattern recognition receptors and thus act as biological response modifiers. This review summarizes data on the hematopoiesis-stimulating effects of β-glucans, as well as on their ability to enhance bone marrow recovery after an injury. β-glucans have been shown to support murine hematopoiesis suppressed by ionizing radiation or cytotoxic anti-cancer therapy. They also enhance stem cell homing and engraftment. Basically, two forms of β-glucan preparations have been investigated, namely particulate and soluble ones. β-glucans are generally well tolerated, the particulate forms showing a higher incidence of undesirable side effects. Taken together, the hematopoiesis-stimulating properties of β-glucans predetermine these biological response modifiers to ever increasing use in human medicinal practice.
- MeSH
- anemie chemicky indukované farmakoterapie MeSH
- antitumorózní látky škodlivé účinky MeSH
- beta-glukany škodlivé účinky farmakologie terapeutické užití MeSH
- hematinika škodlivé účinky farmakologie terapeutické užití MeSH
- hematopoéza účinky léků účinky záření MeSH
- lékové formy MeSH
- lidé MeSH
- radioterapie škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky MeSH
- beta-glukany MeSH
- hematinika MeSH
- lékové formy MeSH
Fetal and adult hematopoietic stem and progenitor cells (HSPCs) are characterized by distinct redox homeostasis that may influence their differential cellular behavior in normal and malignant hematopoiesis. In this work, we have applied a quantitative mass spectrometry-based redox proteomic approach to comprehensively describe reversible cysteine modifications in primary mouse fetal and adult HSPCs. We defined the redox state of 4,438 cysteines in fetal and adult HSPCs and demonstrated a higher susceptibility to oxidation of protein thiols in fetal HSPCs. Our data identified ontogenic changes to oxidation state of thiols in proteins with a pronounced role in metabolism and protein homeostasis. Additional redox proteomic analysis identified oxidation changes to thiols acting in mitochondrial respiration as well as protein homeostasis to be triggered during onset of MLL-ENL leukemogenesis in fetal HSPCs. Our data has demonstrated that redox signaling contributes to the regulation of fundamental processes of developmental hematopoiesis and has pinpointed potential targetable redox-sensitive proteins in in utero-initiated MLL-rearranged leukemia.
- Klíčová slova
- Cysteine oxidative modifications, Developmental biology, Hematopoiesis, Leukemia, Protein translation, Redox proteomics,
- MeSH
- cystein metabolismus MeSH
- hematopoéza MeSH
- myši MeSH
- oxidace-redukce MeSH
- proteom * metabolismus MeSH
- proteomika * MeSH
- sulfhydrylové sloučeniny MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cystein MeSH
- proteom * MeSH
- sulfhydrylové sloučeniny MeSH
Regeneration of severely damaged adult tissues is currently only partially understood. Hematopoietic tissue provides a unique opportunity to study tissue regeneration due to its well established steady-state structure and function, easy accessibility, well established research methods, and the well-defined embryonic, fetal, and adult stages of development. Embryonic/fetal liver hematopoiesis and adult hematopoiesis recovering from damage share the need to expand populations of progenitors and stem cells in parallel with increasing production of mature blood cells. In the present study, we analyzed adult hematopoiesis in mice subjected to a submyeloablative dose (6 Gy) of gamma radiation and targeted the period of regeneration characterized by massive production of mature blood cells along with ongoing expansion of immature hematopoietic cells. We uncovered significantly expanded populations of developmentally advanced erythroid and myeloid progenitors with significantly altered immunophenotype. Their population expansion does not require erythropoietin stimulation but requires the SCF/c-Kit receptor signaling. Regenerating hematopoiesis significantly differs from the expanding hematopoiesis in the fetal liver but we find some similarities between the regenerating hematopoiesis and the early embryonic definitive hematopoiesis. These are in (1) the concomitant population expansion of myeloid progenitors and increasing production of myeloid blood cells (2) performing these tasks despite the severely reduced transplantation capacity of the hematopoietic tissues, and (3) the expression of CD16/32 in most progenitors. Our data thus provide a novel insight into tissue regeneration by suggesting that cells other than stem cells and multipotent progenitors can be of fundamental importance for the rapid recovery of tissue function.
- Klíčová slova
- adult hematopoiesis, bone marrow, embryonic hematopoiesis, ionizing radiation, progenitor cell, regeneration, stem cell,
- Publikační typ
- časopisecké články MeSH
Hematopoiesis is coordinated by a complex regulatory network of transcription factors and among them PU.1 (Spi1, Sfpi1) represents a key molecule. This review summarizes the indispensable requirement of PU.1 during hematopoietic cell fate decisions and how the function of PU.1 can be modulated by protein-protein interactions with additional factors. The mutual negative regulation between PU.1 and GATA-1 is detailed within the context of normal and leukemogenic hematopoiesis and the concept of 'differentiation therapy' to restore normal cellular differentiation of leukemic cells is discussed.
- MeSH
- hematopoéza fyziologie MeSH
- leukemie metabolismus patologie MeSH
- lidé MeSH
- protoonkogenní proteiny fyziologie MeSH
- trans-aktivátory fyziologie MeSH
- transkripční faktory GATA fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- proto-oncogene protein Spi-1 MeSH Prohlížeč
- protoonkogenní proteiny MeSH
- trans-aktivátory MeSH
- transkripční faktory GATA MeSH