Long distance dispersal Dotaz Zobrazit nápovědu
Plant invasions generate massive ecological and economic costs worldwide. Predicting their spatial dynamics is crucial to the design of effective management strategies and the prevention of invasions. Earlier studies highlighted the crucial role of long-distance dispersal in explaining the speed of many invasions. In addition, invasion speed depends highly on the duration of its lag phase, which may depend on the scaling of fecundity with age, especially for woody plants, even though empirical proof is still rare. Bayesian dynamic species distribution models enable the fitting of process-based models to partial and heterogeneous observations using a state-space modeling approach, thus offering a tool to test such hypotheses on past invasions over large spatial scales. We use such a model to explore the roles of long-distance dispersal and age-structured fecundity in the transient invasion dynamics of Plectranthus barbatus, a woody plant invader in South Africa. Our lattice-based model accounts for both short and human-mediated long-distance dispersal, as well as age-structured fecundity. We fitted our model on opportunistic occurrences, accounting for the spatio-temporal variations of the sampling effort and the variable detection rates across datasets. The Bayesian framework enables us to integrate a priori knowledge on demographic parameters and control identifiability issues. The model revealed a massive wave of spatial spread driven by human-mediated long-distance dispersal during the first decade and a subsequent drastic population growth, leading to a global equilibrium in the mid-1990s. Without long-distance dispersal, the maximum population would have been equivalent to 30% of the current equilibrium population. We further identified the reproductive maturity at three years old, which contributed to the lag phase before the final wave of population growth. Our results highlighted the importance of the early eradication of weedy horticultural alien plants around urban areas to hamper and delay the invasive spread.
The monocot family Costaceae Nakai consists of seven genera but their mutual relationships have not been satisfactorily resolved in previous studies employing classical molecular markers. Phylogenomic analyses of 365 nuclear genes and nearly-complete plastome data provide almost fully resolved insights into their diversification. Paracostus is identified as sister to all other taxa, followed by several very short branches leading to discrete lineages, suggesting an ancient rapid radiation of these early lineages and leaving the exact relationships among them unresolved. Relationships among Chamaecostus, Dimerocostus and Monocostus confirmed earlier findings that these genera form a monophyletic group. The Afro-American Costus is also monophyletic. By contrast, Tapeinochilos appeared as a well-supported crown lineage of Cheilocostus rendering it paraphyletic. As these two genera differ morphologically from one another owing to a shift from insect- to bird-pollination, we propose to keep both names. The divergence time within Costaceae was estimated using penalized likelihood utilizing two fossils within Zingiberales, †Spirematospermum chandlerae and †Ensete oregonense, indicated a relatively recent diversification of Costaceae, between 18 and 9 Mya. Based on these data, the current pantropical distribution of the family is hypothesized to be the result of several long-distance intercontinental dispersal events, which do not correlate with global geoclimatic changes.
- Klíčová slova
- Cheilocostus, Generic relationships, Hyb-Seq, Paracostus, Phylogenomics, Tapeinochilos,
- MeSH
- fylogeneze MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zázvorníkotvaré * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The monophyly of the raptorial Circus genus (harriers) has never been in question, but the specific status of many, often vulnerable island endemic, taxa remains uncertain. Here we utilise one mitochondrial and three nuclear loci from all currently recognised Circus taxa (species and subspecies) to infer a robust phylogeny, to estimate the divergence date and to reconstruct the biogeographic origins of the Circus group. Our phylogeny supports both the monophyly of Circus and polyphyly of the genus Accipiter. Depending on the rate of molecular clock used, the emergence of the harrier clade took place between 4.9 and 12.2mya which coincides with the worldwide formation of open habitats which extant harriers now exploit. The sister relationship of the Northern Harrier C. cyaneus hudsonius and the Cinereous Harrier C. cinereus contradicts previous classifications that treated the former as conspecific with the Hen Harrier C. cyaneus cyaneus. Thus both should be elevated to species status: C. hudsonius and C. cyaneus. Further, the African Marsh C. ranivorus and the European Marsh C. aeruginosus Harriers emerge as sister species. The remaining marsh harriers exhibit very little genetic diversity, and are all recently diverged taxa that exhibit allopatric distributions. Considering their sister relationship and geographic proximity, we recommend treating C. approximans and C. spilonotus spilothorax as subspecies of C. approximans. For C. spilonotus spilonotus C. maillardi maillardi and C. maillardi macrosceles, their plumage and morphometric differences, phylogenetic relationship and geographic distributions make lumping of these taxa as a single species complicated. We thus propose to recognise as separate, recently evolved species: C. spilonotus, C. maillardi and C. macrosceles. Biogeographic inferences on the ancestral origin of harriers are uncertain, indicating that the harriers emerged in either the Neotropics, Palearctic or Australasia. We are, however, able to show that speciation within the harriers was driven by long range dispersal and migration events.
- Klíčová slova
- Accipitridae, Biogeographic history, Circus, Migration, Phylogenetics,
- MeSH
- Bayesova věta MeSH
- biologická evoluce * MeSH
- ekosystém MeSH
- Falconiformes klasifikace MeSH
- fylogeneze * MeSH
- genetická variace MeSH
- mitochondriální DNA genetika MeSH
- modely genetické MeSH
- pravděpodobnostní funkce MeSH
- rozšíření zvířat * MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Australasie MeSH
- Názvy látek
- mitochondriální DNA MeSH
Reticulitermes, Heterotermes and Coptotermes form a small termite clade with partly overlapping distributions. Although native species occur across all continents, the factors influencing their distribution are poorly known. Here, we reconstructed the historical biogeography of these termites using mitochondrial genomes of species collected on six continents. Our analyses showed that Reticulitermes split from Heterotermes + Coptotermesat 59.5 Ma (49.9-69.5 Ma 95% CI), yet the oldest split within Reticulitermes(Eurasia and North America) is 16.1 Ma (13.4-19.5 Ma) and the oldest split within Heterotermes + Coptotermesis 36.0 Ma (33.9-40.5 Ma). We detected 14 disjunctions between biogeographical realms, all of which occurred within the last 34 Ma, not only after the break-up of Pangaea, but also with the continents in similar to current positions. Land dispersal over land bridges explained four disjunctions, oceanic dispersal by wood rafting explained eight disjunctions, and human introduction was the source of two recent disjunctions. These wood-eating termites, therefore, appear to have acquired their modern worldwide distribution through multiple dispersal processes, with oceanic dispersal and human introduction favoured by the ecological traits of nesting in wood and producing replacement reproductives.
- Klíčová slova
- Isoptera, Rhinotermitidae, long distance dispersal, molecular clock,
- MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genom hmyzu * MeSH
- genom mitochondriální * MeSH
- Isoptera genetika fyziologie MeSH
- rozšíření zvířat * MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many ephemeral mudflat species, which rely on a soil seed bank to build up the next generation, are endangered in their natural habitat due to the widespread regulation of rivers. The aim of the present study was to elucidate the role of the soil seed bank and dispersal for the maintenance of genetic diversity in populations of near-natural river habitats and anthropogenic habitats created by traditional fish farming practices using Cyperus fuscus as a model. Using microsatellite markers, we found no difference in genetic diversity levels between soil seed bank and above-ground population and only moderate differentiation between the two fractions. One possible interpretation is the difference in short-term selection during germination under specific conditions (glasshouse versus field) resulting in an ecological filtering of genotypes out of the reservoir in the soil. River populations harbored significantly more genetic diversity than populations from the anthropogenic pond types. We suggest that altered levels and patterns of dispersal together with stronger selection pressures and historical bottlenecks in anthropogenic habitats are responsible for the observed reduction in genetic diversity. Dispersal is also supposed to largely prohibit genetic structure across Europe, although there is a gradient in private allelic richness from southern Europe (high values) to northern, especially north-western, Europe (low values), which probably relates to postglacial expansion out of southern and/or eastern refugia.
- Klíčová slova
- Cyperus fuscus, Isoëto‐Nanojuncetea, long‐distance dispersal, microsatellites, ornithochory, selfing,
- Publikační typ
- časopisecké články MeSH
Species with vast production of dust-like windborne seeds, such as orchids, should not be limited by seed dispersal. This paradigm, however, does not fit recent studies showing that many sites suitable for orchids are unoccupied and most seeds land close to their maternal plant. To explore this issue, we studied seed dispersal and gene flow of two forest orchid species, Epipactis atrorubens and Cephalanthera rubra, growing in a fragmented landscape of forested limestone hills in southwest Bohemia, Czech Republic. We used a combination of seed trapping and plant genotyping methods (microsatellite DNA markers) to quantify short- and long-distance dispersal, respectively. In addition, seed production of both species was estimated. We found that most seeds landed very close to maternal plants (95% of captured seeds were within 7.2 m) in both species, and dispersal distance was influenced by forest type in E. atrorubens. In addition, C. rubra showed clonal reproduction (20% of plants were of clonal origin) and very low fruiting success (only 1.6% of plants were fruiting) in comparison with E. atrorubens (25.7%). Gene flow was frequent up to 2 km in C. rubra and up to 125 km in E. atrorubens, and we detected a relatively high dispersal rate among regions in both species. Although both species occupy similar habitats and have similar seed dispersal abilities, C. rubra is notably rarer in the study area. Considerably low fruiting success in this species likely limits its gene flow to longer distances and designates it more sensitive to habitat loss and fragmentation.
- Klíčová slova
- Cephalanthera rubra, Epipactis atrorubens, fragmented landscape, gene flow, microsatellite DNA markers, seed dispersal, seed traps,
- MeSH
- ekosystém * MeSH
- Orchidaceae * genetika MeSH
- šíření semen * MeSH
- tok genů * MeSH
- Publikační typ
- časopisecké články MeSH
Disjunct distributions, characterised by spatially separated populations of related species, offer insights into historical biogeographic patterns and evolutionary processes. This study investigates the evolutionary history of the diving beetle subfamily Lancetinae through a phylogenomic approach incorporating ultraconserved elements (UCEs) and heritage genetic markers. Our findings support an early Miocene origin for Lancetinae, with subsequent diversification influenced by historical vicariance events and long-distance dispersal. The divergence from the closely related subfamily Coptotominae in the late Cretaceous is not consistent with a Gondwanan origin, although highlights a likely Pangean origin for these taxa. This research underscores the significant impact of Gondwanan fragmentation on biogeographic patterns and highlights the remarkable dispersal capabilities of Lancetinae beetles.
- Klíčová slova
- Adaptation, Biogeography, Dispersal, Diving beetles, Lancetes,
- MeSH
- Bayesova věta MeSH
- biologická evoluce * MeSH
- brouci * genetika klasifikace MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- fyziologická adaptace genetika MeSH
- mitochondriální DNA genetika MeSH
- modely genetické MeSH
- molekulární evoluce MeSH
- nízká teplota MeSH
- sekvenční analýza DNA MeSH
- sladká voda MeSH
- vznik druhů (genetika) * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální DNA MeSH
Divergence-time estimation based on molecular phylogenies and the fossil record has provided insights into fundamental questions of evolutionary biology. In Bayesian node dating, phylogenies are commonly time calibrated through the specification of calibration densities on nodes representing clades with known fossil occurrences. Unfortunately, the optimal shape of these calibration densities is usually unknown and they are therefore often chosen arbitrarily, which directly impacts the reliability of the resulting age estimates. As possible solutions to this problem, two nonexclusive alternative approaches have recently been developed, the “fossilized birth–death” (FBD) model and “total-evidence dating.” While these approaches have been shown to perform well under certain conditions, they require including all (or a random subset) of the fossils of each clade in the analysis, rather than just relying on the oldest fossils of clades. In addition, both approaches assume that fossil records of different clades in the phylogeny are all the product of the same underlying fossil sampling rate, even though this rate has been shown to differ strongly between higher level taxa. We here develop a flexible new approach to Bayesian age estimation that combines advantages of node dating and the FBD model. In our new approach, calibration densities are defined on the basis of first fossil occurrences and sampling rate estimates that can be specified separately for all clades. We verify our approach with a large number of simulated data sets, and compare its performance to that of the FBD model. We find that our approach produces reliable age estimates that are robust to model violation, on par with the FBD model. By applying our approach to a large data set including sequence data from over 1000 species of teleost fishes as well as 147 carefully selected fossil constraints, we recover a timeline of teleost diversification that is incompatible with previously assumed vicariant divergences of freshwater fishes. Our results instead provide strong evidence for transoceanic dispersal of cichlids and other groups of teleost fishes.
- Klíčová slova
- Bayesian inference *, calibration density *, Cichlidae *, fossil record *, marine dispersal *, phylogeny *, relaxed molecular clock *,
- MeSH
- Bayesova věta MeSH
- biodiverzita MeSH
- biologické modely * MeSH
- čas MeSH
- cichlidy klasifikace MeSH
- fylogeneze * MeSH
- vznik druhů (genetika) MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Atlantský oceán MeSH
A series of works have described an important role of chemical signaling compounds in generation of the stress response of plants in both the wounded and distant undamaged plant tissues. However, pure chemical signals are often not considered in the fast (minutes) long-distance signaling (systemic response) because of their slow propagation speed. Physical signals (electrical and hydraulic) or a combination of the physical and chemical signals (hydraulic dispersal of solutes) have been proposed as possible linkers of the local wound and the rapid systemic response. We have recently demonstrated an evidence for involvement of chemical compounds (jasmonic and abscisic acids) in the rapid (within 1 hour) inhibition of photosynthetic rate and stomata conductance in distant undamaged tobacco leaves after local burning. The aim of this addendum is to discuss plausible mechanisms of a rapid long-distance chemical signaling and the putative interactions between the physical and chemical signals leading to the fast systemic response.
- Klíčová slova
- abscisic acid, electrical signal, hydraulic surge, jasmonic acid, local burning, systemic response, tobacco,
- Publikační typ
- časopisecké články MeSH
AIM: Our knowledge of Pleistocene refugia and post-glacial recolonization routes of forest understorey plants is still very limited. The geographical ranges of these species are often rather narrow and show highly idiosyncratic, often fragmented patterns indicating either narrow and species-specific ecological tolerances or strong dispersal limitations. However, the relative roles of these factors are inherently difficult to disentangle. LOCATION: Central and south-eastern Europe. TIME PERIOD: 17,100 BP - present. MAJOR TAXA STUDIED: Five understorey herbs of European beech forests: Aposeris foetida, Cardamine trifolia, Euphorbia carniolica, Hacquetia epipactis and Helleborus niger. METHODS: We used spatio-temporally explicit modelling to reconstruct the post-glacial range dynamics of the five forest understorey herbs. We varied niche requirements, demographic rates and dispersal abilities across plausible ranges and simulated the spread of species from potential Pleistocene refugia identified by phylogeographical analyses. Then we identified the parameter settings allowing for the most accurate reconstruction of their current geographical ranges. RESULTS: We found a largely homogenous pattern of optimal parameter settings among species. Broad ecological niches had to be combined with very low but non-zero rates of long-distance dispersal via chance events and low rates of seed dispersal over moderate distances by standard dispersal vectors. However, long-distance dispersal events, although rare, led to high variation among replicated simulation runs. MAIN CONCLUSIONS: Small and fragmented ranges of many forest understorey species are best explained by a combination of broad ecological niches and rare medium- and long-distance dispersal events. Stochasticity is thus an important determinant of current species ranges, explaining the idiosyncratic distribution patterns of the study species despite strong similarities in refugia, ecological tolerances and dispersal abilities.
- Klíčová slova
- Europe, Pleistocene refugia, dispersal limitation, forest herbs, long‐distance dispersal, post‐glacial recolonization, range filling, spatio‐temporally explicit modelling,
- Publikační typ
- časopisecké články MeSH