microsatellite DNA markers
Dotaz
Zobrazit nápovědu
Microsatellites are tandem repeats of simple polymorphic sequences randomly distributed in non-coding regions of DNA. They can be used in cancer genetics and indirect cancer diagnosis and can help unraveling the genetic basis of tumor formation and progression of cancer. Breast cancer is a complex disease in which numerous genetic alterations occur. The knowledge of specific genetic changes and their biological consequences is critical to an understanding of breast cancer tumorigenesis, screening and treatment of patients. Microsatellites can undergo two events during tumor progression. Loss of heterozygosity indicates absence of one allele in a given locus, which is associated with the loss of a corresponding genes. Microsatellite instability reflects replication errors induced by defective function of mismatch repair genes and is demonstrated with the appearance of novel, noninherited alleles in tumor cells and represents a specific pathway of tumor development. Both events serve as prognostic markers, which can be correlated with clinicopathological features and can help exploring breast cancer formation.
- MeSH
- genetické markery MeSH
- lidé MeSH
- mikrosatelitní repetice * MeSH
- nádory prsu diagnóza genetika MeSH
- ztráta heterozygozity MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- genetické markery MeSH
The North American spiny-cheek crayfish, Orconectes limosus (Cambaridae), endangered in its native range, is a widespread invasive species in European waters and conservationally important carrier of crayfish plague. However, its population structure is poorly known, and no informative genetic markers for the species are available. We tested cross-species transfer of microsatellite loci to spiny-cheek crayfish from 5 other crayfish species. Variability of 10 successfully amplifying loci derived from 4 species was then tested in 60 individuals of O. limosus originating from 3 natural populations: the river Danube at Bogyiszló in Hungary, a pond in Starý Klíèov, and the brook Eernovický, both in the Czech Republic. The allele number within the populations ranged from 4 to 10 alleles per locus, while heterozygosity levels varied from 0.650 to 0.900 for H(o) and from 0.660 to 0.890 for H(e). No linkage disequilibrium and no null alleles were detected. The selected markers are useful for assessing population structure, intraspecific variation, and paternity studies in spiny-cheek crayfish.
- MeSH
- chov * MeSH
- genetická variace * MeSH
- genetické markery MeSH
- mikrosatelitní repetice genetika MeSH
- populační genetika * MeSH
- severní raci genetika růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genetické markery MeSH
BACKGROUND AND AIMS: Rubus subgenus Rubus is a group of mostly apomictic and polyploid species with a complicated taxonomy and history of ongoing hybridization. The only polyploid series with prevailing sexuality is the series Glandulosi , although the apomictic series Discolores and Radula also retain a high degree of sexuality, which is influenced by environmental conditions and/or pollen donors. The aim of this study is to detect sources of genetic variability, determine the origin of apomictic taxa and validate microsatellite markers by cloning and sequencing. METHODS: A total of 206 individuals from two central European regions were genotyped for 11 nuclear microsatellite loci and the chloroplast trn L- trn F region. Microsatellite alleles were further sequenced in order to determine the exact repeat number and to detect size homoplasy due to insertions/deletions in flanking regions. KEY RESULTS: The results confirm that apomictic microspecies of ser. Radula are derived from crosses between sexual series Glandulosi and apomictic series Discolores , whereby the apomict acts as pollen donor. Each apomictic microspecies is derived from a single distinct genotype differing from the parental taxa, suggesting stabilized clonal reproduction. Intraspecific variation within apomicts is considerably low compared with sexual series Glandulosi , and reflects somatic mutation accumulation. While facultative apomicts produce clonal offspring, sexual species are the conduits of origin for new genetically different apomictic lineages. CONCLUSIONS: One of the main driving forces of evolution and speciation in the highly apomictic subgenus Rubus in central Europe is sexuality in the series Glandulosi . Palaeovegetation data suggest that initial hybridizations took place over different time periods in the two studied regions, and that the successful origin and spread of apomictic microspecies of the series Radula took place over several millennia. Additionally, the cloning and sequencing show that standard evaluations of microsatellite repeat numbers underestimate genetic variability considering homoplasy in allele size.
- Klíčová slova
- Apomixis, Rubus subgenus Rubus, hybridization, microevolution, microsatellites, polyploidy,
- MeSH
- apomixie * MeSH
- DNA chloroplastová genetika MeSH
- hybridizace genetická * MeSH
- mikrosatelitní repetice * MeSH
- mutace INDEL MeSH
- polyploidie MeSH
- Rubus klasifikace genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- DNA chloroplastová MeSH
The replication error (RER+) phenotype, characterized by microsatellite instability (MSI) has been recently related to mutations of genes involved in DNA mismatch repair pathway. These genetic alterations were first described in hereditary non polyposis colorectal cancer (HNPCC). We examined 44 patients with hematological malignancies (27 AML, 9 MDS, 2 CML-BP and 6 T-ALL) for evidence of MSI. Twenty seven percent of our patients showed differences for only one marker. In four cases (9.1%) MSI was observed in multiple markers and these cases were described as RER+ phenotype. Presented data suggest that this phenomenon may play a role in at least a subset of patients with hematological malignancies.
- MeSH
- dítě MeSH
- dospělí MeSH
- expanze trinukleotidových repetic MeSH
- fenotyp MeSH
- genetické markery MeSH
- hematologické nádory genetika MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrosatelitní repetice * MeSH
- mladiství MeSH
- mutace * MeSH
- mutační analýza DNA metody MeSH
- oprava DNA genetika MeSH
- předškolní dítě MeSH
- recidiva MeSH
- senioři MeSH
- ztráta heterozygozity MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genetické markery MeSH
Cryptolestes ferrugineus (Stephens, 1831) is an important insect pest of stored products. Due to its broad host range, short life cycle, and high reproductive capacity, this species has rapidly colonized temperate and tropical regions around the world. In this study, we isolated 18 novel polymorphic microsatellite loci from an enriched genomic library based on a biotin/streptavidin capture protocol. These loci will be useful tool to better understand the genetic structure and migration patterns of C. ferrugineus throughout the world. The genetic parameters were estimated based on 80 individual C. ferrugineus from two natural populations. The results revealed that 18 loci were different polymorphic levels. The numbers of alleles ranged from 3 to 12, and eleven loci demonstrated polymorphic information contents greater than 0.5. The observed (H O) and expected (H E) heterozygosities ranged from 0.051 to 0.883 and 0.173 to 0.815, respectively. Five locus/population combinations significantly deviated from Hardy-Weinberg equilibrium. We also demonstrated the potential utility of the C. ferrugineus microsatellites as population and species markers for four additional Cryptolestes species.
- Klíčová slova
- Cryptolestes ferrugineus, Cryptolestes microsatellites, population genetics, primers,
- MeSH
- brouci klasifikace genetika fyziologie MeSH
- jedlá semena parazitologie MeSH
- mikrosatelitní repetice * MeSH
- polymorfismus genetický genetika MeSH
- techniky amplifikace nukleových kyselin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The village and street dogs represent a unique model of canine populations. In the absence of selective breeding and veterinary care, they are subject mostly to natural selection. Their analyses contribute to understanding general mechanisms governing the genetic diversity, evolution and adaptation. In this study, we analyzed the genetic diversity and population structure of African village dogs living in villages in three different geographical areas in Northern Kenya. Data obtained for neutral microsatellite molecular markers were compared with those computed for potentially non-neutral markers of candidate immunity-related genes. The neutral genetic diversity was similar to other comparable village dog populations studied so far. The overall genetic diversity in microsatellites was higher than the diversity of European pure breeds, but it was similar to the range of diversity observed in a group composed of many European breeds, indicating that the African population has maintained a large proportion of the genetic diversity of the canine species as a whole. Microsatellite marker diversity indicated that the entire population is subdivided into three genetically distinct, although closely related subpopulations. This genetical partitioning corresponded to their geographical separation and the observed gene flow well correlated with the communication patterns among the three localities. In contrast to neutral microsatellites, the genetic diversity in immunity-related candidate SNP markers was similar across all three subpopulations and to the European group. It seems that the genetic structure of this particular population of Kenyan village dogs is mostly determined by geographical and anthropogenic factors influencing the gene flow between various subpopulations rather than by biological factors, such as genetic contribution of original migrating populations and/or the pathogen-mediated selection. On the other hand, the study of oldest surviving dogs suggested a biological mechanism, i.e. a possible advantage of the overal heterozygosity marked by the the microsatellite loci analyzed.
- MeSH
- analýza hlavních komponent MeSH
- fenotyp MeSH
- genetická variace * MeSH
- genetické lokusy MeSH
- genetické markery MeSH
- haplotypy genetika MeSH
- heterozygot MeSH
- hlavní histokompatibilní komplex genetika MeSH
- imunita genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- jezera MeSH
- mikrosatelitní repetice genetika MeSH
- populační genetika * MeSH
- psi genetika imunologie MeSH
- software MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- psi genetika imunologie MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Keňa MeSH
- Názvy látek
- genetické markery MeSH
Aphanomyces astaci is an invasive pathogenic oomycete responsible for the crayfish plague, a disease that has devastated European freshwater crayfish. So far, five genotype groups of this pathogen have been identified by applying random amplified polymorphic DNA analysis on axenic cultures. To allow genotyping of A. astaci in host tissue samples, we have developed co-dominant microsatellite markers for this pathogen, tested them on pure cultures of all genotype groups, and subsequently evaluated their use on tissues of (1) natural A. astaci carriers, i.e., North American crayfish species, and (2) A. astaci-infected indigenous European species from crayfish plague outbreaks. Out of over 200 potential loci containing simple sequence repeat (SSR) motifs identified by 454 pyrosequencing of SSR-enriched library, we tested 25 loci with highest number of repeats, and finally selected nine that allow unambiguous separation of all known RAPD-defined genotype groups of A. astaci from axenic cultures. Using these markers, we were able to characterize A. astaci strains from DNA isolates from infected crayfish tissues when crayfish had a moderate to high agent level according to quantitative PCR analyses. The results support the hypothesis that different North American crayfish hosts carry different genotype groups of the pathogen, and confirm that multiple genotype groups, including the one originally introduced to Europe in the 19th century, cause crayfish plague outbreaks in Central Europe. So far undocumented A. astaci genotype seems to have caused one of the analysed outbreaks from the Czech Republic. The newly developed culture-independent approach allowing direct genotyping of this pathogen in both axenic cultures and mixed genome samples opens new possibilities in studies of crayfish plague pathogen distribution, diversity and epidemiology.
- Klíčová slova
- Aphanomyces astaci, Crayfish mass mortalities, Crayfish plague, Genotyping, Invasive crayfish, Microsatellites,
- MeSH
- Aphanomyces klasifikace genetika izolace a purifikace MeSH
- genetická variace MeSH
- genotyp MeSH
- mikrosatelitní repetice genetika MeSH
- severní raci parazitologie MeSH
- technika náhodné amplifikace polymorfní DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
An understanding of recent evolutionary processes is essential for the successful conservation and management of contemporary populations, especially where they concern the introduction or invasion of species outside their natural range. However, the potentially negative implications of intraspecific introductions and invasions have attracted less attention, although they also represent a potential threat to biodiversity, and are commonly facilitated through human activities. The European bitterling (Rhodeus amarus) is a small cyprinid fish that decreased greatly in its distribution during the 1970s and 1980s and was subsequently included on many European conservation lists. This decline appears to have reversed, and the extent of its distribution now exceeds its former range. We used a combination of 12 microsatellite markers and cytochrome b sequences on a large data set (693 individuals) across the current range of the European bitterling to investigate possible scenarios for its colonization of Europe. We show that the inferred history of colonization of Europe was largely congruent between mitochondrial and nuclear markers. The most divergent mtDNA lineages occur in the Aegean region but probably are not reproductively isolated as the Aegean populations also displayed mtDNA haplotypes from other lineages and nuclear data indicated their close relationship to Danubian populations. Much of Europe is currently populated by descendants of two main lineages that came to natural secondary contact in western Europe. An approximate Bayesian computation analysis indicates different dates for admixture events among western and central European populations ranging from the last deglaciation (natural) to the last few centuries (human-assisted translocations).
- MeSH
- Bayesova věta MeSH
- Cyprinidae genetika MeSH
- fylogeografie MeSH
- genetická variace * MeSH
- genotyp MeSH
- mikrosatelitní repetice MeSH
- mitochondriální DNA genetika MeSH
- modely genetické MeSH
- molekulární evoluce * MeSH
- populační genetika * MeSH
- sekvenční analýza DNA MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- mitochondriální DNA MeSH
Syphacia obvelata is a common gastro-intestinal parasitic nematode of the house mouse (Mus musculus), a prime model rodent species. Investigations of the genetic structure, variability of parasite populations and other biological aspects of this host-parasite system are limited due to the lack of genetic resources for S. obvelata. To fill this gap, we developed a set of microsatellite markers for S. obvelata, using a 454 pyrosequencing approach. We designed three multiplex panels allowing genotyping of 10 polymorphic loci and scrutinized them on 42 samples from two different regions inhabited by two different house mouse subspecies (Mus musculus musculus and M. m. domesticus). The numbers of alleles ranged from 2 to 6 with mean observed heterozygosities 0.1476 and 0.2095 for domesticus and musculus worms, respectively. The described markers will facilitate further studies on population biology and co-evolution of this host-parasite system.
- MeSH
- alely MeSH
- druhová specificita MeSH
- genetická variace MeSH
- genotyp MeSH
- mikrosatelitní repetice genetika MeSH
- myši MeSH
- nematodózy parazitologie veterinární MeSH
- nemoci hlodavců parazitologie MeSH
- Oxyuroidea genetika MeSH
- populační genetika MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We reconstructed the historical pattern of postglacial biogeographic range expansion of the boreal tree species Alnus incana in Europe. To assess population genetic structure and diversity, we performed a combined analysis of nuclear microsatellite loci and chloroplast DNA sequences (65 populations, 1004 individuals). Analysis of haplotype and microsatellite diversity revealed that southeastern refugial populations situated in the Carpathians and the Balkan Peninsula did not spread north and cannot be considered as important source populations for postglacial recolonization of Europe; populations in Eastern Europe did not establish Fennoscandian populations; populations in Fennoscandia and Eastern Europe have no unique genetic cluster, but represent a mix with a predominant cluster typical for Central Europe; and that colonization of Fennoscandia and Eastern Europe took place from Central Europe. Our findings highlight the importance of an effective refugium in Central Europe located outside classical southern refugia confirming the existence of northern refugia for boreal trees in Europe. The postglacial range expansion of A. incana did not follow the model established for Picea abies. Fennoscandian populations are not derived from Eastern European ones, but from Central European ones.
- Klíčová slova
- Alnus, approximate Bayesian computation (ABC), cpDNA, microsatellite, phylogeography, population structure, postglacial migration,
- MeSH
- Bayesova věta MeSH
- DNA chloroplastová genetika MeSH
- fylogeografie MeSH
- genetická variace MeSH
- haplotypy MeSH
- mikrosatelitní repetice genetika MeSH
- olše genetika MeSH
- populační genetika * MeSH
- stromy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA chloroplastová MeSH