Multi-attribute
Dotaz
Zobrazit nápovědu
Aluminum is a widely popular material due to its low cost, low weight, good formability and capability to be machined easily. When a non-metal such as ceramic is added to aluminum alloy, it forms a composite. Metal Matrix Composites (MMCs) are emerging as alternatives to conventional metals due to their ability to withstand heavy load, excellent resistance to corrosion and wear, and comparatively high hardness and toughness. Aluminum Matrix Composites (AMCs), the most popular category in MMCs, have innumerable applications in various fields such as scientific research, structural, automobile, marine, aerospace, domestic and construction. Their attractive properties such as high strength-to-weight ratio, high hardness, high impact strength and superior tribological behavior enable them to be used in automobile components, aviation structures and parts of ships. Thus, in this research work an attempt has been made to fabricate Aluminum Alloys and Aluminum Matrix Composites (AMCs) using the popular synthesis technique called stir casting and join them by friction stir welding (FSW). Dissimilar grades of aluminum alloy, i.e., Al 6061 and Al 1100, are used for the experimental work. Alumina and Silicon Carbide are used as reinforcement with the aluminum matrix. Mechanical and corrosion properties are experimentally evaluated. The FSW process is analyzed by experimentally comparing the welded alloys and welded composites. Finally, the best suitable FSW combination is selected with the help of a Multi-Attribute Decision Making (MADM)-based numerical optimization technique called Weighted Aggregated Sum Product Assessment (WASPAS).
- Klíčová slova
- alloys, aluminum, composites, friction stir welding, multi-attribute decision making, optimization, parameters, properties, stir casting,
- Publikační typ
- časopisecké články MeSH
The demand for renewable energy has significantly increased over the last decade with increased attention to the preservation of the environment and sustainable, optimal resource management. As traditional sources of energy production are depleting at an alarming rate and causing long-lasting environmental damage, it is essential to explore green and cost-effective methodologies for meeting energy demand. With each country having different geographical, political, social, and natural factors, the problem arises of which renewable energy should be utilized for optimal resource management. This multi-criteria decision making (MCDM) challenge is tackled by applying a dynamic fuzzy hypersoft set-based Method for the evaluation of currently deployed Renewable Energy systems and providing a decision support system for the installation of new ones based on the factors mentioned above for Turkey. As the installation of new renewable energy projects and the evaluation of old ones is significantly influenced by human judgment, it leaves great room for uncertainty primarily because of the psychological factors of the expert. The novel concept of Fuzzy Hypersoft Sets (FHSs) and their Entropy (EN) and TOPSIS-based operations are first discussed with reference to the problem at hand. The presented structure is superior to the ones in the literature by allowing access to data parameters as sub-parametric values while utilizing the versatility of Fuzzy structures to deal with uncertainty. The technique has great potential to serve as a potential decision support system in any setting. For now, hypothetical expert ratings are used to illustrate the working of the dynamic structure along with a sensitivity analysis to investigate the primary criterion weights in sorting. The evaluation of currently deployed renewable energy systems using our methodology revealed an average improvement in system performance compared to traditional methods. Furthermore, the decision support system for the installation of new projects based on geographical, political, social, and natural factors exhibited a potential increase in overall system efficiency. These numeric outcomes highlight the effectiveness and practical applicability of our approach in optimizing resource management and fostering sustainable energy practices.
- Klíčová slova
- Impreciseness, Information measures, Multi-argument, Multi-attribute, Renewable energy, Vagueness,
- Publikační typ
- časopisecké články MeSH
Neighborhood environmental attributes have been found to be associated with residents' time spent walking and in physical activity, in studies from single countries and in multiple-country investigations. There are, however, mixed findings on such environmental relationships with sedentary (sitting) time, which primarily have used evidence derived from single-country investigations with self-reported behavioral outcome measures. We examined potential relationships of neighborhood environmental attributes with objectively-assessed sedentary time using data from 5712 adults recruited from higher and lower socio-economic status neighborhoods in 12 sites in 10 countries, between 2002 and 2011. Ten perceived neighborhood attributes, derived from an internationally-validated scale, were assessed by questionnaire. Sedentary time was derived from hip-worn accelerometer data. Associations of individual environmental attributes and a composite environmental index with sedentary time were estimated using generalized additive mixed models. In fully adjusted models, higher street connectivity was significantly related to lower sedentary time. Residential density, pedestrian infrastructure and safety, and lack of barriers to walking were related to higher sedentary time. Aesthetics and safety from crime were related to less sedentary time in women only. The predicted difference in sedentary time between those with the minimum versus maximum composite environmental index values was 71 min/day. Overall, certain built environment attributes, including street connectivity, land use mix and aesthetics were found to be related to sedentary behavior in both expected and unexpected directions. Further research using context-specific measures of sedentary time is required to improve understanding of the potential role of built environment characteristics as influences on adults' sedentary behavior.
- Klíčová slova
- Adults, Built environment, Sedentary behavior, Sitting time,
- MeSH
- akcelerometrie statistika a číselné údaje MeSH
- časové faktory MeSH
- celosvětové zdraví MeSH
- charakteristiky bydlení statistika a číselné údaje MeSH
- chůze statistika a číselné údaje MeSH
- cvičení MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- průřezové studie MeSH
- průzkumy a dotazníky MeSH
- sedavý životní styl * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- vytvořené prostředí statistika a číselné údaje MeSH
- zpráva o sobě MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
Milling affects not only particle size distributions but also other important granule quality attributes, such as API content and porosity, which can have a significant impact on the quality of the final drug form. The ability to understand and predict the effects of milling conditions on these attributes is crucial. A hybrid population balance model (PBM) was developed to model the Comil, which was validated using experimental results with an R2 of above 0.9. This presented model is dependent on the process conditions, material properties and equipment geometry, such as the classification screen size. In order to incorporate the effects of different quality attributes in the model physics, the dimensionality of the PBM was increased to account for changes in API content and porosity, which also produced predictions for these attributes in the results. Additionally, a breakage mode probability kernel was used to introduce dynamic breakage modes by predicting the probability of attrition and impact mode, which are dependent on the process conditions and feed properties at each timestep.
- Klíčová slova
- Milling, breakage mode, granule quality attributes, population balance model,
- MeSH
- farmaceutická technologie * metody MeSH
- poréznost MeSH
- příprava léků metody MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
Aggregation-induced optical phenomena are at the forefront of modern materials science. In this work, tetracyanoethylene (TCNE) is reacted and encapsulated within melamine. Crystallization from aqueous tetrahydrofuran solutions containing melamine and TCNE at varying concentrations yields colorful crystals exhibiting multi-wavelength fluorescence emission. Combined infrared spectroscopy and mass spectrometry reveal that the crystals are melamine doped with trace amounts of 1,1,2,3,3-pentacyanopropenide. Fluorescence excitation-emission spectral mapping elucidates the concentration dependence of fluorescence emission in both the precursor solutions and the resulting crystals. Density functional theory calculations attribute the observed multi-wavelength emission to dimers of the pentacyanopropenide. Encapsulating reactive molecules within crystalline melamine, as demonstrated with 1,1,2,3,3-pentacyanopropenide and its dimer, offers a versatile strategy for stabilizing a wide range of otherwise unstable species.
- Publikační typ
- časopisecké články MeSH
Lack of physical activity is a global public health problem causing not only morbidity and premature mortality, but it is also a major economic burden worldwide. One of the cornerstones of a physically active lifestyle is Motor Competence (MC). MC is a complex biocultural attribute and therefore, its study requires a multi-sectoral, multi-, inter- and transdisciplinary approach. MC is a growing area of research, especially in children and adolescents due to its positive association with a plethora of health and developmental outcomes. Many questions, however, remain to be answered in this field of research, with regard to: (i) Health and Developmental-related Associations of MC; (ii) Assessment of MC; (iii) Prevalence and Trends of MC; (iv) Correlates and Determinants of MC; (v) MC Interventions, and (vi) Translating MC Research into Practice and Policy. This paper presents a narrative review of the literature, summarizing current knowledge, identifying key research gaps and presenting questions for future investigation on MC in children and adolescents. This is a collaborative effort from the International Motor Competence Network (IMCNetwork) a network of academics and researchers aiming to promote international collaborative research and knowledge translation in the expansive field of MC. The knowledge and deliverables generated by addressing and answering the aforementioned research questions on MC presented in this review have the potential to shape the ways in which researchers and practitioners promote MC and physical activity in children and adolescents across the world.
- Klíčová slova
- fundamental movement skills, motor coordination, motor development, motor proficiency, physical activity,
- MeSH
- cvičení * MeSH
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- motorické dovednosti * MeSH
- podpora zdraví MeSH
- prevalence MeSH
- životní styl MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The single molecule magnet (SMM) bis(phthalocyaninato)terbium(iii) (TbPc2) has received significant and increasing attention as an exemplar system for realizing molecule-based spin electronics. Attaining higher nuclearity via multi-decker TbPc systems has remained an outstanding challenge, as known examples of Tb2Pc3 systems are only those containing Pc rings with substituents (e.g. alkyl, alkoxyl). Here we report on the spontaneous formation of Tb2Pc3 species from TbPc2 precursors via sublimation in ultrahigh vacuum (UHV) onto an Ag(111) surface. The presence of Tb2Pc3 molecules on the surface are inspected using scanning probe microscopy with submolecular resolution supported by density functional theory (DFT) calculations and additional chemical analysis. We observe the selective presence of a Kondo resonance (30 K) in the Tb2Pc3 species, that we attribute to differences in the orientation of the internal molecular ligands. Formation of triple-decker complexes offers new possibilities to study and control magnetic interactions not accessible with standard TbPc2 molecules.
- Publikační typ
- časopisecké články MeSH
State-of-the-art climate models project a substantial decline in precipitation for the Mediterranean region in the future1. Supporting this notion, several studies based on observed precipitation data spanning recent decades have suggested a decrease in Mediterranean precipitation2-4, with some attributing a large fraction of this change to anthropogenic influences3,5. Conversely, certain researchers have underlined that Mediterranean precipitation exhibits considerable spatiotemporal variability driven by atmospheric circulation patterns6,7 maintaining stationarity over the long term8,9. These conflicting perspectives underscore the need for a comprehensive assessment of precipitation changes in this region, given the profound social, economic and environmental implications. Here we show that Mediterranean precipitation has largely remained stationary from 1871 to 2020, albeit with significant multi-decadal and interannual variability. This conclusion is based on the most comprehensive dataset available for the region, encompassing over 23,000 stations across 27 countries. While trends can be identified for some periods and subregions, our findings attribute these trends primarily to atmospheric dynamics, which would be mostly linked to internal variability. Furthermore, our assessment reconciles the observed precipitation trends with Coupled Model Intercomparison Project Phase 6 model simulations, neither of which indicate a prevailing past precipitation trend in the region. The implications of our results extend to environmental, agricultural and water resources planning in one of the world's prominent climate change hotspots10.
- Publikační typ
- časopisecké články MeSH
A useful expansion of the intuitionistic fuzzy set (IFS) for dealing with ambiguities in information is the Pythagorean fuzzy set (PFS), which is one of the most frequently used fuzzy sets in data science. Due to these circumstances, the Aczel-Alsina operations are used in this study to formulate several Pythagorean fuzzy (PF) Aczel-Alsina aggregation operators, which include the PF Aczel-Alsina weighted average (PFAAWA) operator, PF Aczel-Alsina order weighted average (PFAAOWA) operator, and PF Aczel-Alsina hybrid average (PFAAHA) operator. The distinguishing characteristics of these potential operators are studied in detail. The primary advantage of using an advanced operator is that it provides decision-makers with a more comprehensive understanding of the situation. If we compare the results of this study to those of prior strategies, we can see that the approach proposed in this study is more thorough, more precise, and more concrete. As a result, this technique makes a significant contribution to the solution of real-world problems. Eventually, the suggested operator is put into practise in order to overcome the issues related to multi-attribute decision-making under the PF data environment. A numerical example has been used to show that the suggested method is valid, useful, and effective.
- Klíčová slova
- Aczel-Alsina operations, MADM, Pythagorean fuzzy Aczel-Alsina average aggregation operators, Pythagorean fuzzy elements,
- Publikační typ
- časopisecké články MeSH
Human infection with the important zoonotic foodborne pathogen Toxoplasma gondii has been associated with unwashed raw fresh produce consumption. The lack of a standardised detection method limits the estimation of fresh produce as an infection source. To support method development and standardisation, an extensive literature review and a multi-attribute assessment were performed to analyse the key aspects of published methods for the detection of T. gondii oocyst contamination in fresh produce. Seventy-seven published studies were included, with 14 focusing on fresh produce. Information gathered from expert laboratories via an online questionnaire were also included. Our findings show that procedures for oocyst recovery from fresh produce mostly involved sample washing and pelleting of the washing eluate by centrifugation, although washing procedures and buffers varied. DNA extraction procedures including mechanical or thermal shocks were identified as necessary steps to break the robust oocyst wall. The most suitable DNA detection protocols rely on qPCR, mostly targeting the B1 gene or the 529 bp repetitive element. When reported, validation data for the different detection methods were not comparable and none of the methods were supported by an interlaboratory comparative study. The results of this review will pave the way for an ongoing development of a widely applicable standard operating procedure.
- Klíčová slova
- Toxoplasma gondii, detection, foodborne parasites, fresh produce, oocyst, ready-to-eat (RTE) salad, toxoplasmosis, zoonosis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH