A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) treatment is stem cell therapy. Neural progenitors derived from induced pluripotent cells (NP-iPS) might rescue or replace dying motoneurons (MNs). However, the mechanisms responsible for the beneficial effect are not fully understood. The aim here was to investigate the mechanism by studying the effect of intraspinally injected NP-iPS into asymptomatic and early symptomatic superoxide dismutase (SOD)1G93A transgenic rats. Prior to transplantation, NP-iPS were characterized in vitro for their ability to differentiate into a neuronal phenotype. Motor functions were tested in all animals, and the tissue was analyzed by immunohistochemistry, qPCR, and Western blot. NP-iPS transplantation significantly preserved MNs, slowed disease progression, and extended the survival of all treated animals. The dysregulation of spinal chondroitin sulfate proteoglycans was observed in SOD1G93A rats at the terminal stage. NP-iPS application led to normalized host genes expression (versican, has-1, tenascin-R, ngf, igf-1, bdnf, bax, bcl-2, and casp-3) and the protection of perineuronal nets around the preserved MNs. In the host spinal cord, transplanted cells remained as progenitors, many in contact with MNs, but they did not differentiate. The findings suggest that NP-iPS demonstrate neuroprotective properties by regulating local gene expression and regulate plasticity by modulating the central nervous system (CNS) extracellular matrix such as perineuronal nets (PNNs).
- Keywords
- ALS, iPS, motoneuron death, neurodegeneration, plasticity, proteoglycans, stem cells, transplantation,
- MeSH
- Amyotrophic Lateral Sclerosis therapy MeSH
- Induced Pluripotent Stem Cells cytology MeSH
- Rats MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Neural Stem Cells cytology metabolism transplantation MeSH
- Neuronal Plasticity * MeSH
- Nerve Growth Factors genetics metabolism MeSH
- Peripheral Nerves physiology MeSH
- Rats, Sprague-Dawley MeSH
- Apoptosis Regulatory Proteins genetics metabolism MeSH
- Nerve Regeneration MeSH
- Tenascin genetics metabolism MeSH
- Stem Cell Transplantation methods MeSH
- Versicans genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nerve Growth Factors MeSH
- Apoptosis Regulatory Proteins MeSH
- Tenascin MeSH
- Versicans MeSH
Neural stem cells are fundamental to development of the central nervous system (CNS)-as well as its plasticity and regeneration-and represent a potential tool for neuro transplantation therapy and research. This study is focused on examination of the proliferation dynamic and fate of embryonic neural stem cells (eNSCs) under differentiating conditions. In this work, we analyzed eNSCs differentiating alone and in the presence of sonic hedgehog (SHH) or triiodothyronine (T3) which play an important role in the development of the CNS. We found that inhibition of the SHH pathway and activation of the T3 pathway increased cellular health and survival of differentiating eNSCs. In addition, T3 was able to increase the expression of the gene for the receptor smoothened (Smo), which is part of the SHH signaling cascade, while SHH increased the expression of the T3 receptor beta gene (Thrb). This might be the reason why the combination of SHH and T3 increased the expression of the thyroxine 5-deiodinase type III gene (Dio3), which inhibits T3 activity, which in turn affects cellular health and proliferation activity of eNSCs.
- Keywords
- cell differentiation, embryonic neural stem cells, sonic hedgehog, triiodothyronine,
- MeSH
- Iodide Peroxidase genetics metabolism MeSH
- Cells, Cultured MeSH
- Mouse Embryonic Stem Cells cytology metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Neural Stem Cells cytology metabolism MeSH
- Neurogenesis * MeSH
- Hedgehog Proteins genetics metabolism MeSH
- Smoothened Receptor genetics metabolism MeSH
- Triiodothyronine metabolism MeSH
- Thyroid Hormone Receptors beta genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- iodothyronine deiodinase type III MeSH Browser
- Iodide Peroxidase MeSH
- Hedgehog Proteins MeSH
- Smoothened Receptor MeSH
- Shh protein, mouse MeSH Browser
- Smo protein, mouse MeSH Browser
- Triiodothyronine MeSH
- Thyroid Hormone Receptors beta MeSH
Human embryonic stem cell-derived neural precursors (hESC NPs) are considered to be a promising tool for cell-based therapy in central nervous system injuries and neurodegenerative diseases. The Ca(2+) ion is an important intracellular messenger essential for the regulation of various cellular functions. We investigated the role and physiology of Ca(2+) signaling to characterize the functional properties of CCTL14 hESC NPs during long-term maintenance in culture (in vitro). We analyzed changes in cytoplasmic Ca(2+) concentration ([Ca(2+)]i) evoked by high K(+), adenosine-5'-triphosphate (ATP), glutamate, γ-aminobutyric acid (GABA), and caffeine in correlation with the expression of various neuronal markers in different passages (P6 through P10) during the course of hESC differentiation. We found that only differentiated NPs from P7 exhibited significant and specific [Ca(2+)]i responses to various stimuli. About 31% of neuronal-like P7 NPs exhibited spontaneous [Ca(2+)]i oscillations. Pharmacological and immunocytochemical assays revealed that P7 NPs express L- and P/Q-type Ca(2+) channels, P2X2, P2X3, P2X7, and P2Y purinoreceptors, glutamate receptors, and ryanodine (RyR1 and RyR3) receptors. The ATP- and glutamate-induced [Ca(2+)]i responses were concentration-dependent. Higher glutamate concentrations (over 100 μM) caused cell death. Responses to ATP were observed in the presence or in the absence of extracellular Ca(2+). These results emphasize the notion that with time in culture, these cells attain a transient period of operative Ca(2+) signaling that is predictive of their ability to act as stem elements.
- MeSH
- Biomarkers metabolism MeSH
- Cell Differentiation drug effects MeSH
- Time Factors MeSH
- Embryonic Stem Cells cytology drug effects metabolism MeSH
- Glutamates pharmacology MeSH
- Intracellular Space drug effects metabolism MeSH
- Microscopy, Confocal MeSH
- Humans MeSH
- Neural Stem Cells cytology drug effects metabolism MeSH
- Cell Count MeSH
- Receptors, Purinergic metabolism MeSH
- Calcium metabolism MeSH
- Calcium Signaling * drug effects MeSH
- Calcium Channels metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Glutamates MeSH
- Receptors, Purinergic MeSH
- Calcium MeSH
- Calcium Channels MeSH
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) exhibit multilineage differentiation potential, adhere to plastic, and express a specific set of surface markers-CD105, CD73, CD90. Although there are relatively well-established differentiation protocols for WJ-MSCs, the exact molecular mechanisms involved in their in vitro long-term culture and differentiation remain to be elucidated. In this study, the cells were isolated from Wharton's jelly of umbilical cords obtained from healthy full-term deliveries, cultivated in vitro, and differentiated towards osteogenic, chondrogenic, adipogenic and neurogenic lineages. RNA samples were isolated after the differentiation regimen and analyzed using an RNA sequencing (RNAseq) assay, which led to the identification of differentially expressed genes belonging to apoptosis-related ontological groups. ZBTB16 and FOXO1 were upregulated in all differentiated groups as compared to controls, while TGFA was downregulated in all groups. In addition, several possible novel marker genes associated with the differentiation of WJ-MSCs were identified (e.g., SEPTIN4, ITPR1, CNR1, BEX2, CD14, EDNRB). The results of this study provide an insight into the molecular mechanisms involved in the long-term culture in vitro and four-lineage differentiation of WJ-MSCs, which is crucial to utilize WJ-MSCs in regenerative medicine.
- Keywords
- MSC, RNAseq, Wharton’s jelly, apoptosis, differentiation, mesenchymal stem cells,
- MeSH
- Apoptosis genetics MeSH
- Cell Differentiation genetics MeSH
- Chondrocytes MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Mesenchymal Stem Cells * MeSH
- Osteoblasts MeSH
- Nerve Tissue Proteins MeSH
- Transcriptome MeSH
- Adipocytes MeSH
- Wharton Jelly * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- BEX2 protein, human MeSH Browser
- Nerve Tissue Proteins MeSH
A number of surprising observations have shown that stem cells, in suitable conditions, have the ability to produce a whole spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This phenomenon is called stem cell plasticity, which means that tissue-specific stem cells are mutually interchangeable. In our experiments, as a model, we used neural stem cells (NSCs) harvested from fetal (E14-15) neocortex and beta-galactosidase positive. In the first experiment we found that on days 12 and 30 after sub-lethal irradiation (LD 8.5 Gy) and (beta-galactosidase(+)) NSCs transplantation all mice survived, just as the group with bone marrow transplantation. Moreover, the bone marrow of mice transplanted NSCs contained the number of CFU-GM colonies with beta-galactosidase(+) cells which was as much as 50% higher. These differences were statistically significant, p<0.001. In the second experiment, we studied kinetics of (beta-galactosidase(+)) NSCs after their transplantation to sub-lethally irradiated mice. Histochemistry of tissues was performed on days 12 and 30 post-transplantation, and beta-galactosidase(+) cells were detected with the help of histochemical examination of removed tissues (lung, liver, spleen, thymus, and skeletal muscle). In tissues removed on day 12 post-transplantation, we found a significantly higher number of beta-galactosidase(+) cells in the spleen and thymus on day 30. While we presumed the presence beta-galactosidase(+) cells in the spleen, as spleen and reticuloendothelial system represent an important retaining system for different cell types, the presence of beta-galactosidase(+) cells in the thymus was rather surprising but very interesting. This indicates a certain mutual and close interconnection of transplanted stem cells and immune system in an adult organism. In the third experiment, we verified the mutual interchange of Sca-1 surface antigen in the bone marrow cells and NSCs before transplantation. Analysis of this antigen showed 24.8% Sca-1 positive cells among the bone marrow cells, while NSCs were Sca-1 negative. Our experiments show that NSCs share hemopoietic identity and may significantly influence the recovery of damaged hematopoiesis but do not have typical superficial markers as HSCs. This result is important for the determination of predictive factors for hemopoiesis recovery, for stem cell plasticity and for their use in the cell therapy.
- MeSH
- Cell Lineage physiology MeSH
- Whole-Body Irradiation MeSH
- Hematopoiesis physiology MeSH
- Stem Cells cytology physiology MeSH
- Brain cytology physiology MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Fetus cytology physiology MeSH
- Stem Cell Transplantation * MeSH
- Transplantation Chimera physiology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
The ongoing process of neurogenesis in the adult mammalian forebrain suggests the possible capacity for limited self-repair after brain injury. Previously, we have demonstrated that in an animal model of Huntington's disease the neurodegenerative process initiates immediate intensive cell proliferation and differentiation resulting in characteristic enlargement of the subependymal zone (SEZ) of lateral brain ventricles. Now, our interest is focused on the architecture of the neurogenic niche of the SEZ in the identical model, particularly on characteristic features of astrocyte-like cells which are considered to be not only niche cells but also neural stem cells. Our findings prove higher activation of the lateral part of the SEZ (L-SEZ) adjacent to the degenerated striatum compared with the rostral part of the SEZ (R-SEZ). In the activated L-SEZ, niche cells which ensheathe clusters of neural progenitors are of immature astrocytic phenotype because of nestin and vimentin expression (except the expression of glial fibrillary acidic protein). However, the coexpression of all three filaments is not always found. Intermediate filaments also enable us to distinguish the basic shape of astrocytic cells within the SEZ, majority of which resemble protoplasmic rather than fibrillary astrocytes. Furthermore, our results show a wide plasticity of these astrocyte-like cells in immediate response to an extensive pathological process in the brain. These observations are consistent with the fact that adult stem cells undergo different processes in an already mature environment, and therefore can exhibit some specific characteristics unlike the embryonic or fetal neural stem cells.
- MeSH
- Cell Differentiation physiology MeSH
- Cell Division physiology MeSH
- Corpus Striatum pathology MeSH
- Adult MeSH
- Huntington Disease pathology MeSH
- Stem Cells cytology MeSH
- Humans MeSH
- Neurons cytology MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.
- Keywords
- NG2 glia heterogeneity, chondroitin sulfate proteoglycan 4, focal cerebral ischemia, neurogenesis, oligodendrocyte precursor cell, single-cell RNA sequencing,
- MeSH
- Antigens metabolism MeSH
- Astrocytes metabolism MeSH
- Brain Ischemia * metabolism MeSH
- Brain metabolism MeSH
- Mice, Transgenic MeSH
- Mice MeSH
- Neural Stem Cells * metabolism MeSH
- Neuroglia metabolism MeSH
- Oligodendroglia metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens MeSH
NG2 cells represent one of the most proliferative glial cell populations in the intact mammalian central nervous system (CNS). They are well-known for their ability to renew themselves or to generate new oligodendrocytes during development as well as in adulthood, therefore also being termed oligodendrocyte progenitor cells. Following CNS injuries, such as demyelination, trauma or ischemia, the proliferative capacity of NG2 cells rapidly increases and moreover, their differentiation potential broadens, as documented by numerous reports also describing their differentiation into astrocytes or even neurons. Here, we summarize the current knowledge about NG2 cells proliferation, their fate plasticity during embryogenesis as well as in postnatal CNS under physiological and pathological conditions, with the main emphasis on the role of various signaling molecules, growth factors, hormones or even neurotransmitters on the fate potential of NG2 cells.
- Keywords
- Astrocytes, Glioma, Myelin plasticity, NG2 cells, Oligodendrocyte precursor cells (OPC),
- MeSH
- Antigens metabolism MeSH
- Stem Cells drug effects physiology MeSH
- Central Nervous System Agents pharmacology therapeutic use MeSH
- Humans MeSH
- Intercellular Signaling Peptides and Proteins metabolism MeSH
- Multipotent Stem Cells drug effects physiology transplantation MeSH
- Neurogenesis drug effects physiology MeSH
- Neuroglia drug effects physiology MeSH
- Neuronal Plasticity drug effects physiology MeSH
- Oligodendroglia drug effects physiology MeSH
- Cell Proliferation drug effects physiology MeSH
- Proteoglycans metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Antigens MeSH
- Central Nervous System Agents MeSH
- Intercellular Signaling Peptides and Proteins MeSH
- Proteoglycans MeSH
Sarcomas represent an extensive group of divergent malignant diseases, with the only common characteristic of being derived from mesenchymal cells. As such, sarcomas are by definition very heterogeneous, and this heterogeneity does not manifest only upon intertumoral comparison on a bulk tumor level but can be extended to intratumoral level. Whereas part of this intratumoral heterogeneity could be understood in terms of clonal genetic evolution, an essential part includes a hierarchical relationship between sarcoma cells, governed by both genetic and epigenetic influences, signals that sarcoma cells are exposed to, and intrinsic developmental programs derived from sarcoma cells of origin. The notion of this functional hierarchy operating within each tumor implies the existence of sarcoma stem cells, which may originate from mesenchymal stem cells, and indeed, mesenchymal stem cells have been used to establish several crucial experimental sarcoma models and to trace down their respective stem cell populations. Mesenchymal stem cells themselves are heterogeneous, and, moreover, there are alternative possibilities for sarcoma cells of origin, like neural crest-derived stem cells, or mesenchymal committed precursor cells, or - in rhabdomyosarcoma - muscle satellite cells. These various origins result in substantial heterogeneity in possible sarcoma initiation. Genetic and epigenetic changes associated with sarcomagenesis profoundly impact the biology of sarcoma stem cells. For pediatric sarcomas featuring discrete reciprocal translocations and largely stable karyotypes, the translocation-activated oncogenes could be crucial factors that confer stemness, principally by modifying transcriptome and interfering with normal epigenetic regulation; the most extensively studied examples of this process are myxoid/round cell liposarcoma, Ewing sarcoma, and synovial sarcoma. For adult sarcomas, which have typically complex and unstable karyotypes, stemness might be defined more operationally, as a reflection of actual assembly of genetically and epigenetically conditioned stemness factors, with dedifferentiated liposarcoma providing a most thoroughly studied example. Alternatively, stemness can be imposed by tumor microenvironment, as extensively documented in osteosarcoma. In spite of this heterogeneity in both sarcoma initiation and underlying stemness biology, some of the molecular mechanisms of stemness might be remarkably similar in diverse sarcoma types, like abrogation of classical tumor suppressors pRb and p53, activation of Sox-2, or inhibition of canonical Wnt/β-catenin signaling. Moreover, even some stem cell markers initially characterized for their stem cell enrichment capacity in various carcinomas or leukemias seem to function quite similarly in various sarcomas. Understanding the biology of sarcoma stem cells could significantly improve sarcoma patient clinical care, leading to both better patient stratification and, hopefully, development of more effective therapeutic options.
- Keywords
- Chondrosarcoma, Dickkopf, Ewing sarcoma, Genetic and epigenetic plasticity, In vitro sarcoma progression models, Liposarcoma, Mesenchymal stem cells, Osteosarcoma, Sarcoma, Sarcoma cells of origin, Sarcoma stem cells, Sox-2, Synovial sarcoma, Wnt/β-catenin pathway, p53, pRb,
- MeSH
- Epigenesis, Genetic MeSH
- Sarcoma, Ewing MeSH
- Stem Cells cytology MeSH
- Humans MeSH
- Sarcoma pathology MeSH
- Sarcoma, Synovial MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
INTRODUCTION: Stroke is one of the most devastating diseases and a leading cause of mortality worldwide. So far, clinical management of stroke involves surgical clot retrieval or thrombolytic treatment inducing reperfusion of the occluded vessels in the cerebral infarcted area, which is dependent on early intervention following insult. New treatment strategies involve the promotion of angiogenesis and neuroplasticity, stimulation of endogenous neurogenesis, remyelinization, and immunomodulation by means of cell transplantation and sustained drug delivery. AREAS COVERED: This review describes different types of stem cells (endogenous and exogenous neural progenitors, pluripotent stem cell derivatives, mesenchymal stem cells [MSCs], olfactory ensheathing cells) and biomaterials, their routes of administration, means of noninvasive imaging, and the prerequisites and hurdles for the successful translation of the cell therapies to the clinic. EXPERT OPINION: Neural precursors (NPs) derived from pluripotent stem cells, unlike MSCs, can not only remodel the CNS by promoting neuroplasticity, angiogenesis, and immunomodulation, but also replace damaged cells. To transfer NPs into the clinic, step by step guidelines for researchers are identified and discussed.
- Keywords
- clinical trials, ischemic lesion, mesenchymal stem cells, neural progenitors, neurogenesis, noninvasive imaging, stem cells, stroke, translation,
- MeSH
- Biocompatible Materials therapeutic use MeSH
- Cell- and Tissue-Based Therapy methods trends MeSH
- Stroke physiopathology therapy MeSH
- Wound Healing physiology MeSH
- Humans MeSH
- Neurogenesis physiology MeSH
- Neuronal Plasticity physiology MeSH
- Stem Cell Niche physiology MeSH
- Pluripotent Stem Cells cytology physiology transplantation MeSH
- Nerve Regeneration physiology MeSH
- Guided Tissue Regeneration * instrumentation methods MeSH
- Tissue Engineering instrumentation methods MeSH
- Tissue Scaffolds chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Biocompatible Materials MeSH