Nine new crystal structures of CG-rich DNA 18-mers with the sequence 5'-GGTGGGGGC-XZ-GCCCCACC-3', which are related to the bacterial repetitive extragenic palindromes, are reported. 18-mer oligonucleotides with the central XZ dinucleotide systematically mutated to all 16 sequences show complex behavior in solution, but all ten so far successfully crystallized 18-mers crystallized as A-form duplexes. The refinement protocol benefited from the recurrent use of geometries of the dinucleotide conformer (NtC) classes as refinement restraints in regions of poor electron density. The restraints are automatically generated at the dnatco.datmos.org web service and are available for download. This NtC-driven protocol significantly helped to stabilize the structure refinement. The NtC-driven refinement protocol can be adapted to other low-resolution data such as cryo-EM maps. To test the quality of the final structural models, a novel validation method based on comparison of the electron density and conformational similarity to the NtC classes was employed.
- Keywords
- DNA structure, base pairing, dnatco.datmos.org, structure refinement, structure validation,
- MeSH
- DNA * chemistry MeSH
- Cryoelectron Microscopy methods MeSH
- Nucleic Acid Conformation MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA * MeSH
Binder H33 is a small protein binder engineered by ribosome display to bind human interleukin 10. Crystals of binder H33 display severe diffraction anisotropy. A set of data files with correction for diffraction anisotropy based on different local signal-to-noise ratios was prepared. Paired refinement was used to find the optimal anisotropic high-resolution diffraction limit of the data: 3.13-2.47 Å. The structure of binder H33 belongs to the 2% of crystal structures with the highest solvent content in the Protein Data Bank.
- Keywords
- anisotropy, binder H33, paired refinement,
- Publication type
- Journal Article MeSH
Electron diffraction is a unique tool for analysing the crystal structures of very small crystals. In particular, precession electron diffraction has been shown to be a useful method for ab initio structure solution. In this work it is demonstrated that precession electron diffraction data can also be successfully used for structure refinement, if the dynamical theory of diffraction is used for the calculation of diffracted intensities. The method is demonstrated on data from three materials - silicon, orthopyroxene (Mg,Fe)(2)Si(2)O(6) and gallium-indium tin oxide (Ga,In)(4)Sn(2)O(10). In particular, it is shown that atomic occupancies of mixed crystallographic sites can be refined to an accuracy approaching X-ray or neutron diffraction methods. In comparison with conventional electron diffraction data, the refinement against precession diffraction data yields significantly lower figures of merit, higher accuracy of refined parameters, much broader radii of convergence, especially for the thickness and orientation of the sample, and significantly reduced correlations between the structure parameters. The full dynamical refinement is compared with refinement using kinematical and two-beam approximations, and is shown to be superior to the latter two.
- Keywords
- dynamical diffraction, orthopyroxene, precession electron diffraction, site occupancy,
- Publication type
- Journal Article MeSH
Crystallographic resolution is a key characteristic of diffraction data and represents one of the first decisions an experimenter has to make in data evaluation. Conservative approaches to the high-resolution cutoff determination are based on a number of criteria applied to the processed X-ray diffraction data only. However, high-resolution data that are weaker than arbitrary cutoffs can still result in the improvement of electron-density maps and refined structure models. Therefore, the impact of reflections from resolution shells higher than those previously used in conservative structure refinement should be analysed by the paired refinement protocol. For this purpose, a tool called PAIREF was developed to provide automation of this protocol. As a new feature, a complete cross-validation procedure has also been implemented. Here, the design, usage and control of the program are described, and its application is demonstrated on six data sets. The results prove that the inclusion of high-resolution data beyond the conventional criteria can lead to more accurate structure models.
- Keywords
- PAIREF, X-ray diffraction, high-resolution limit, macromolecular crystallography, paired refinement,
- Publication type
- Journal Article MeSH
Theoretically, crystals with supercells exist at a unique crossroads where they can be considered as either a large unit cell with closely spaced reflections in reciprocal space or a higher dimensional superspace with a modulation that is commensurate with the supercell. In the latter case, the structure would be defined as an average structure with functions representing a modulation to determine the atomic location in 3D space. Here, a model protein structure and simulated diffraction data were used to investigate the possibility of solving a real incommensurately modulated protein crystal using a supercell approximation. In this way, the answer was known and the refinement method could be tested. Firstly, an average structure was solved by using the `main' reflections, which represent the subset of the reflections that belong to the subcell and in general are more intense than the `satellite' reflections. The average structure was then expanded to create a supercell and refined using all of the reflections. Surprisingly, the refined solution did not match the expected solution, even though the statistics were excellent. Interestingly, the corresponding superspace group had multiple 3D daughter supercell space groups as possibilities, and it was one of the alternate daughter space groups that the refinement locked in on. The lessons learned here will be applied to a real incommensurately modulated profilin-actin crystal that has the same superspace group.
- Keywords
- aperiodic crystallography, modulated protein crystals, supercell crystallographic refinement, superspace group,
- MeSH
- Actins chemistry MeSH
- Protein Conformation MeSH
- Crystallography, X-Ray methods MeSH
- Models, Molecular MeSH
- Profilins chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Actins MeSH
- Profilins MeSH
In macromolecular crystallography, paired refinement is generally accepted to be the optimal approach for the determination of the high-resolution cutoff. The software tool PAIREF provides automation of the protocol and associated analysis. Support for phenix.refine as a refinement engine has recently been implemented in the program. This feature is presented here using previously published data for thermolysin. The results demonstrate the importance of the complete cross-validation procedure to obtain a thorough and unbiased insight into the quality of high-resolution data.
- Keywords
- PAIREF, Phenix, X-ray diffraction, high-resolution limit, macromolecular crystallography, paired refinement,
- MeSH
- Databases, Protein * standards MeSH
- Crystallography, X-Ray methods standards MeSH
- Software * standards MeSH
- Publication type
- Journal Article MeSH
Dynamical refinement is a well established method for refining crystal structures against 3D electron diffraction (ED) data and its benefits have been discussed in the literature [Palatinus, Petříček & Corrêa, (2015). Acta Cryst. A71, 235-244; Palatinus, Corrêa et al. (2015). Acta Cryst. B71, 740-751]. However, until now, dynamical refinements have only been conducted using the independent atom model (IAM). Recent research has shown that a more accurate description can be achieved by applying the transferable aspherical atom model (TAAM), but this has been limited only to kinematical refinements [Gruza et al. (2020). Acta Cryst. A76, 92-109; Jha et al. (2021). J. Appl. Cryst. 54, 1234-1243]. In this study, we combine dynamical refinement with TAAM for the crystal structure of 1-methyluracil, using data from precession ED. Our results show that this approach improves the residual Fourier electrostatic potential and refinement figures of merit. Furthermore, it leads to systematic changes in the atomic displacement parameters of all atoms and the positions of hydrogen atoms. We found that the refinement results are sensitive to the parameters used in the TAAM modelling process. Though our results show that TAAM offers superior performance compared with IAM in all cases, they also show that TAAM parameters obtained by periodic DFT calculations on the refined structure are superior to the TAAM parameters from the UBDB/MATTS database. It appears that multipolar parameters transferred from the database may not be sufficiently accurate to provide a satisfactory description of all details of the electrostatic potential probed by the 3D ED experiment.
Electron cryo-microscopy (cryo-EM) is rapidly becoming a major competitor to X-ray crystallography, especially for large structures that are difficult or impossible to crystallize. While recent spectacular technological improvements have led to significantly higher resolution three-dimensional reconstructions, the average quality of cryo-EM maps is still at the low-resolution end of the range compared with crystallography. A long-standing challenge for atomic model refinement has been the production of stereochemically meaningful models for this resolution regime. Here, it is demonstrated that including accurate model geometry restraints derived from ab initio quantum-chemical calculations (HF-D3/6-31G) can improve the refinement of an example structure (chain A of PDB entry 3j63). The robustness of the procedure is tested for additional structures with up to 7000 atoms (PDB entry 3a5x and chain C of PDB entry 5fn5) using the less expensive semi-empirical (GFN1-xTB) model. The necessary algorithms enabling real-space quantum refinement have been implemented in the latest version of qr.refine and are described here.
- Keywords
- cryo-EM, crystallography, phenix.comparama, protein, quantum refinement, real-space refinement,
- MeSH
- Algorithms MeSH
- Cryoelectron Microscopy methods MeSH
- Protein Conformation * MeSH
- Crystallography, X-Ray methods MeSH
- Models, Molecular * MeSH
- Proteins chemistry MeSH
- Software * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Proteins MeSH
Accurate structure refinement from electron-diffraction data is not possible without taking the dynamical-diffraction effects into account. A complete three-dimensional model of the structure can be obtained only from a sufficiently complete three-dimensional data set. In this work a method is presented for crystal structure refinement from the data obtained by electron diffraction tomography, possibly combined with precession electron diffraction. The principle of the method is identical to that used in X-ray crystallography: data are collected in a series of small tilt steps around a rotation axis, then intensities are integrated and the structure is optimized by least-squares refinement against the integrated intensities. In the dynamical theory of diffraction, the reflection intensities exhibit a complicated relationship to the orientation and thickness of the crystal as well as to structure factors of other reflections. This complication requires the introduction of several special parameters in the procedure. The method was implemented in the freely available crystallographic computing system Jana2006.
- Keywords
- dynamical diffraction, electron crystallography, electron diffraction tomography,
- Publication type
- Journal Article MeSH
The digital large-angle convergent-beam electron diffraction (D-LACBED) technique is applied to Ca3Mn2O7 for a range of temperatures. Bloch-wave simulations are used to examine the effects that changes in different parameters have on the intensity in D-LACBED patterns, and atomic coordinates, thermal atomic displacement parameters and apparent occupancy are refined to achieve a good fit between simulation and experiment. The sensitivity of the technique to subtle changes in structure is demonstrated. Refined structures are in good agreement with previous determinations of Ca3Mn2O7 and show the decay of anti-phase oxygen octahedral tilts perpendicular to the c axis of the A21am unit cell with increasing temperature, as well as the robustness of oxygen octahedral tilts about the c axis up to ∼400°C. The technique samples only the zero-order Laue zone and is therefore insensitive to atom displacements along the electron-beam direction. For this reason it is not possible to distinguish between in-phase and anti-phase oxygen octahedral tilting about the c axis using the [110] data collected in this study.
- Keywords
- CBED, Ca3Mn2O7, LACBED, digital diffraction, electron diffraction,
- Publication type
- Journal Article MeSH