fossil insect
Dotaz
Zobrazit nápovědu
With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These "missing links" fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.
- MeSH
- biologická evoluce * MeSH
- ekologie MeSH
- fylogeneze * MeSH
- hmyz anatomie a histologie účinky záření MeSH
- jantar MeSH
- Magnoliopsida chemie MeSH
- pyl chemie MeSH
- záření MeSH
- zkameněliny anatomie a histologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- jantar MeSH
Metamorphosis endowed the insects with properties that enabled them to conquer the Earth. It is a hormonally controlled morphogenetic process that transforms the larva into the adult. Metamorphosis appeared with the origin of wings and flight. The sesquiterpenoid juvenile hormone (JH) suppresses wing morphogenesis and ensures that metamorphosis takes place at the right ontogenetic time. This review explores the origin of insect metamorphosis and the ancestral function of JH. Fossil record shows that the first Paleozoic winged insects had (hemimetabolous) metamorphosis, and their larvae were likely aquatic. In the primitive wingless silverfish that lacks metamorphosis, JH is essential for late embryogenesis and reproduction. JH production after the embryo dorsal closure promotes hatching and terminal tissue maturation.
- MeSH
- biologická evoluce * MeSH
- biologická proměna MeSH
- hmyz * růst a vývoj fyziologie MeSH
- juvenilní hormony MeSH
- larva růst a vývoj fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- juvenilní hormony MeSH
Throughout evolution, entomopathogenic (insect-pathogenic) fungi have played a pivotal role in regulating insect populations. However, little is known about ancient entomopathogenic fungi due to the scarcity of fossils displaying typical pathogenic structures on their presumed hosts. Here, we report two new fungi, Paleoophiocordyceps gerontoformicae sp. nov. and Paleoophiocordyceps ironomyiae sp. nov., from mid-Cretaceous Kachin amber (approx. 99 million years old). They share common traits with Ophiocordyceps and are associated with an ant pupa and a fly, respectively. These fossils are among the oldest fossil records of animal-pathogenic fungi. In addition, we performed a divergence time estimation analysis showing that Ophiocordyceps likely originated during the Early Cretaceous. We further compiled the hosts of extant Ophiocordyceps and inferred the evolution of host associations within the genus based on ancestral character state reconstruction. Our results suggest that Ophiocordyceps made a host jump from Coleoptera to Lepidoptera and Hymenoptera during the Cretaceous, and its subsequent speciation was probably related to the increase in diversity and abundance of its moth and ant hosts. Our results not only highlight the ecological significance of pathogenic fungi in Mesozoic terrestrial ecosystems, but also provide new insights into the coevolution between entomopathogenic fungi and host insects.
- Klíčová slova
- Mesozoic, amber, ant, fossil, host–parasite association,
- MeSH
- biologická evoluce * MeSH
- Diptera * mikrobiologie MeSH
- fylogeneze MeSH
- hmyz * mikrobiologie MeSH
- Hypocreales * fyziologie MeSH
- jantar MeSH
- zkameněliny * mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jantar MeSH
The four described fossil taxa originally assigned to Pyrrhocoridae (Hemiptera: Heteroptera) are reviewed. Mesopyrrhocoris fasciatus Hong Wang, 1990 (correction of gender agreement) from the Lower Cretaceous of Laiyang Basin, Shandong, China, was reclassified as Cimicomorpha incertae sedis by Shcherbakov (2008), an opinion confirmed here. The status of Dysdercus cinctus Scudder, 1890 and Dysdercus unicolor Scudder, 1890 from the Eocene of Florissant, Colorado, USA, and their placement in Pyrrhocoridae, are doubtful. Pyrrhocoris rottensis nom nov. (= Pyrrhocoris tibialis Statz Wagner, 1950) from the Upper Oligocene of Rott, Germany, is reclassified here as Lygaeoidea incertae sedis due to the presence of ocelli in the fossil. As a result, currently there is no fossil taxon which can be placed in Pyrrhocoroidea with certainty. The extant Pyrrhocoris tibialis Stl, 1874 is confirmed as junior subjective synonym of P. sibiricus Kuschakewitsch, 1866.
- MeSH
- Hemiptera * MeSH
- Heteroptera * MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The appearance of wings in insects, early in their evolution [1], has been one of the more critical innovations contributing to their extraordinary diversity. Despite the conspicuousness and importance of wings, the origin of these structures has been difficult to resolve and represented one of the "abominable mysteries" in evolutionary biology [2]. More than a century of debate has boiled the matter down to two competing alternatives-one of wings representing an extension of the thoracic notum, the other stating that they are appendicular derivations from the lateral body wall. Recently, a dual model has been supported by genomic and developmental data [3-6], representing an amalgamation of elements from both the notal and pleural hypotheses. Here, we reveal crucial information from the wing pad joints of Carboniferous palaeodictyopteran insect nymphs using classical and high-tech techniques. These nymphs had three pairs of wing pads that were medially articulated to the thorax but also broadly contiguous with the notum anteriorly and posteriorly (details unobservable in modern insects), supporting their overall origin from the thoracic notum as well as the expected medial, pleural series of axillary sclerites. Our study provides support for the formation of the insect wing from the thoracic notum as well as the already known pleural elements of the arthropodan leg. These results support the unique, dual model for insect wing origins and the convergent reduction of notal fusion in more derived clades, presumably due to wing rotation during development, and they help to bring resolution to this long-standing debate.
- Klíčová slova
- Carboniferous, Insecta, Late Paleozoic, Palaeodictyoptera, Pterygota, origin of insect wings, wing pad articulation, wing pad postembryonic development, wing pad tracheation,
- MeSH
- biologická evoluce * MeSH
- hmyz anatomie a histologie růst a vývoj MeSH
- křídla zvířecí anatomie a histologie MeSH
- nymfa anatomie a histologie MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Due to their aquatic larvae, the evolution of mayflies is intricately tied to environmental changes affecting lakes and rivers. Despite a rich fossil record, little is known about the factors shaping the pattern of diversification of mayflies in deep time. We assemble an unprecedented dataset encompassing all fossil occurrences of mayflies and perform a Bayesian analysis to identify periods of increased origination or extinction. We provide strong evidence for a major extinction of mayflies in the mid-Cretaceous. This extinction and subsequent faunal turnover were probably connected with the rise of angiosperms. Their dominance caused increased nutrient input and changed the chemistry of the freshwater environments, a trend detrimental mainly to lacustrine insects. Mayflies underwent a habitat shift from hypotrophic lakes to running waters, where most of their diversity has been concentrated from the Late Cretaceous to the present.
- MeSH
- Bayesova věta MeSH
- Ephemeroptera * MeSH
- hmyz MeSH
- larva MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVES: This study presents the Integrated Leaf Trait Analysis (ILTA), a workflow for the combined application of methodologies in leaf trait and insect herbivory analyses on fossil dicot leaf assemblages. The objectives were (1) to record the leaf morphological variability, (2) to describe the herbivory pattern on fossil leaves, (3) to explore relations between leaf morphological trait combination types (TCTs), quantitative leaf traits, and other plant characteristics (e.g., phenology), and (4) to explore relations of leaf traits and insect herbivory. MATERIAL AND METHODS: The leaves of the early Oligocene floras Seifhennersdorf (Saxony, Germany) and Suletice-Berand (Ústí nad Labem Region, Czech Republic) were analyzed. The TCT approach was used to record the leaf morphological patterns. Metrics based on damage types on leaves were used to describe the kind and extent of insect herbivory. The leaf assemblages were characterized quantitatively (e.g., leaf area and leaf mass per area (LMA)) based on subsamples of 400 leaves per site. Multivariate analyses were performed to explore trait variations. RESULTS: In Seifhennersdorf, toothed leaves of TCT F from deciduous fossil-species are most frequent. The flora of Suletice-Berand is dominated by evergreen fossil-species, which is reflected by the occurrence of toothed and untoothed leaves with closed secondary venation types (TCTs A or E). Significant differences are observed for mean leaf area and LMA, with larger leaves tending to lower LMA in Seifhennersdorf and smaller leaves tending to higher LMA in Suletice-Berand. The frequency and richness of damage types are significantly higher in Suletice-Berand than in Seifhennersdorf. In Seifhennersdorf, the evidence of damage types is highest on deciduous fossil-species, whereas it is highest on evergreen fossil-species in Suletice-Berand. Overall, insect herbivory tends to be more frequently to occur on toothed leaves (TCTs E, F, and P) that are of low LMA. The frequency, richness, and occurrence of damage types vary among fossil-species with similar phenology and TCT. In general, they are highest on leaves of abundant fossil-species. DISCUSSION: TCTs reflect the diversity and abundance of leaf architectural types of fossil floras. Differences in TCT proportions and quantitative leaf traits may be consistent with local variations in the proportion of broad-leaved deciduous and evergreen elements in the ecotonal vegetation of the early Oligocene. A correlation between leaf size, LMA, and fossil-species indicates that trait variations are partly dependent on the taxonomic composition. Leaf morphology or TCTs itself cannot explain the difference in insect herbivory on leaves. It is a more complex relationship where leaf morphology, LMA, phenology, and taxonomic affiliation are crucial.
- Klíčová slova
- Fossil leaves, Insect herbivory, Integrated Leaf Trait Analysis, Leaf mass per area, Leaf properties, Leaf traits, Multivariate analysis, Oligocene, Paleogene, Plant-insect interaction,
- MeSH
- býložravci MeSH
- fenotyp MeSH
- hmyz MeSH
- listy rostlin * anatomie a histologie MeSH
- rostliny * anatomie a histologie MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Insects are the only arthropod group to achieve powered flight, which facilitated their explosive radiation on land. It remains a significant challenge to understand the evolutionary transition from nonflying (apterygote) to flying (pterygote) insects due to the large gap in the fossil record. Under such a situation, ontogenic information has historically been used to compensate for fossil evidence. Recent evo-devo studies support and refine a paleontology-based classical hypothesis that an ancestral exite incorporated into the body wall contributed to the origin of insect wings. The modern hypothesis locates an ancestral precoxa leg segment with an exite within the hexapod lateral tergum, reframing the long-standing debate on the insect wing origin. A current focus is on the contributions of the incorporated exite homolog and surrounding tissues, such as the pleuron and the medial bona fide tergum, to wing evolution. In parallel, recent analyses of Paleozoic fossils have confirmed thoracic and abdominal lateral body outgrowths as transitional wing precursors and suggested their possible role as respiratory organs in aquatic or semiaquatic environments. These recent studies have revised our understanding of the transition to flying insects. This review highlights recent progress in both evo-devo and paleontology, and discusses future challenges, including the evolution of metamorphic development.
Insect fossils bear important information about the evolutionary history of the group. The fossil record of Elateridae, a large cosmopolitan beetle family, has been greatly understudied and the available data are often replete with ambiguity and uncertainty. The research of Elateridae evolution cannot be done without solid genus-group name concepts. In this study we provide an updated comprehensive summary of the fossil genera in Elateridae, including their systematic placement and information on the type species, gender, number of species, age range, and relevant bibliography. We list seven valid fossil genera in Agrypninae, one in Cardiophorinae, two in Dendrometrinae, five in Elaterinae, two in Negastriinae, one in Omalisinae, one in Pityobiinae, and 36 in Protagrypninae. Additional 19 genera are tentatively classified as Elateridae incertae sedis, and their placements are discussed. Further, we move genera Babuskaya Martins-Neto & Gallego, 2009, Cardiosyne Martins-Neto & Gallego, 2006, Fengningia Hong, 1984 and Gemelina Martins-Neto & Gallego, 2006 from Elateridae to Coleoptera incertae sedis. We also discuss the genera previously placed in Elateridae, which are currently not included in the family. The data on the fossil generic diversity suggest that Elateridae originated in the Triassic and rapidly diversified and became comparatively abundant through the Jurassic. We call for further research on the fossil Elateridae from various deposits in order to increase our knowledge on the origin, evolution, and palaeodiversity of the group.
- Klíčová slova
- Cenozoic, Elateroidea, Mesozoic, classification, click-beetles, evolution, palaeodiversity, systematics,
- Publikační typ
- časopisecké články MeSH
Megasecoptera are insects with haustellate mouthparts and petiolate wings closely related to Palaeodictyoptera and one of the few insect groups that didn't survive the Permian-Triassic mass extinction. Recent discovery of Brodioptera sinensis in early Pennsylvanian deposits at Xiaheyan in northern China has increased our knowledge of its external morphology using conventional optical stereomicroscopy. Environmental scanning electron microscopy (ESEM) of structures, such as antennae, mouthparts, wing surfaces, external copulatory organs and cerci have shed light on their micromorphology and supposed function. A comparative study has shown an unexpected dense pattern of setae on the wing membrane of B. sinensis. In addition, unlike the results obtained by stereomicroscopy it revealed that the male and female external genitalia clearly differ in their fine structure and setation. Therefore, the present study resulted in a closer examination of the microstructure and function of previously poorly studied parts of the body of Paleozoic insects and a comparison with homologous structures occurring in other Palaeodictyopteroida, Odonatoptera and Ephemerida. This indicates, that the role and presumptive function of these integumental protuberances is likely to have been a sensory one in the coordination of mouthparts and manipulation of stylets, escape from predators, enhancement of aerodynamic properties and copulatory behaviour.
- MeSH
- anatomické struktury zvířat fyziologie ultrastruktura MeSH
- hmyz klasifikace fyziologie ultrastruktura MeSH
- skenovací elektrochemická mikroskopie MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH