mRNA splicing variant Dotaz Zobrazit nápovědu
Alternative pre-mRNA splicing increases transcriptome plasticity by forming naturally-occurring alternative splicing variants (ASVs). Alterations of splicing processes, caused by DNA mutations, result in aberrant splicing and the formation of aberrant mRNA isoforms. Analyses of hereditary cancer predisposition genes reveal many DNA variants with unknown clinical significance (VUS) that potentially affect pre-mRNA splicing. Therefore, a comprehensive description of ASVs is an essential prerequisite for the interpretation of germline VUS in high-risk individuals. To identify ASVs in a gene of interest, we have proposed an approach based on multiplex PCR (mPCR) amplification of all theoretically possible exon-exon junctions and subsequent characterization of size-selected and pooled mPCR products by next-generation sequencing (NGS). The efficiency of this method is illustrated by a comprehensive analysis of BRCA1 ASVs in human leukocytes, normal mammary, and adipose tissues and stable cell lines. We revealed 94 BRCA1 ASVs, including 29 variants present in all tested samples. While differences in the qualitative expression of BRCA1 ASVs among the analyzed human tissues were minor, larger differences were detected between tissue and cell line samples. Compared with other ASV analysis methods, this approach represents a highly sensitive and rapid alternative for the identification of ASVs in any gene of interest.
- Klíčová slova
- Alternative splicing, BRCA1, Multiplex PCR, NGS, mRNA splicing variant,
- MeSH
- alternativní sestřih * MeSH
- izoformy RNA MeSH
- lidé MeSH
- multiplexová polymerázová řetězová reakce metody MeSH
- mutace * MeSH
- nádory prsu genetika MeSH
- protein BRCA1 genetika MeSH
- výpočetní biologie MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- BRCA1 protein, human MeSH Prohlížeč
- izoformy RNA MeSH
- protein BRCA1 MeSH
Hepatocyte nuclear factor-1-beta (HNF1B) is a transcription factor and putative biomarker of solid tumours. Recently, we have revealed a variety of HNF1B mRNA alternative splicing variants (ASVs) with unknown, but potentially regulatory, functions. The aim of our work was to quantify the most common variants and compare their expression in tumour and non-tumour tissues of the large intestine, prostate, and kidney. The HNF1B mRNA variants 3p, Δ7, Δ7-8, and Δ8 were expressed across all the analysed tissues in 28.2-33.5%, 1.5-2%, 0.8-1.7%, and 2.3-6.9% of overall HNF1B mRNA expression, respectively, and occurred individually or in combination. The quantitative changes of ASVs between tumour and non-tumour tissue were observed for the large intestine (3p, Δ7-8), prostate (3p), and kidney samples (Δ7). Decreased expression of the overall HNF1B mRNA in the large intestine and prostate cancer samples compared with the corresponding non-tumour samples was observed (p = 0.019 and p = 0.047, respectively). The decreased mRNA expression correlated with decreased protein expression in large intestine carcinomas (p < 0.001). The qualitative and quantitative pattern of the ASVs studied by droplet digital PCR was confirmed by next-generation sequencing, which suggests the significance of the NGS approach for further massive evaluation of the splicing patterns in a variety of genes.
- MeSH
- alternativní sestřih * MeSH
- hepatocytární jaderný faktor 1-beta genetika metabolismus MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- nádorové biomarkery genetika metabolismus MeSH
- nádory genetika metabolismus MeSH
- polymerázová řetězová reakce MeSH
- protein - isoformy MeSH
- regulace genové exprese u nádorů MeSH
- retrospektivní studie MeSH
- RNA nádorová genetika metabolismus MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- hepatocytární jaderný faktor 1-beta MeSH
- HNF1B protein, human MeSH Prohlížeč
- messenger RNA MeSH
- nádorové biomarkery MeSH
- protein - isoformy MeSH
- RNA nádorová MeSH
Hepatocyte nuclear factor-1-beta (HNF1B) is a transcription factor crucial for the development of several tissues, and a promising biomarker of certain solid tumours. Thus far, two HNF1B alternative splicing variants (ASVs) have been described, however, the complete spectrum, prevalence and role of HNF1B ASVs in tumorigenesis are unclear. Considering the equivocal data about HNF1B ASVs and expression presented in literature, our aim was to characterize the spectrum of HNF1B mRNA splicing variants across different tissues. Here, we characterize HNF1B ASVs with high sensitivity in carcinomas of the uterine corpus, large intestine, kidney, pancreas, and prostate, with selected paired healthy tissues, using the previously described multiplex PCR and NGS approach. We identified 45 ASVs, of which 43 were novel. The spectrum and relative quantity of expressed ASVs mRNA differed among the analysed tissue types. Two known (3p, Δ7_8) and two novel (Δ7, Δ8) ASVs with unknown biological functions were detected in all the analysed tissues in a higher proportion. Our study reveals the wide spectrum of HNF1B ASVs in selected tissues. Characterization of the HNF1B ASVs is an important prerequisite for further expression studies to delineate the HNF1B splicing pattern, potential ASVs functional impact, and eventual refinement of HNF1B's biomarker role.
- MeSH
- alternativní sestřih genetika MeSH
- biologické markery metabolismus MeSH
- hepatocytární jaderný faktor 1-beta genetika metabolismus MeSH
- ledviny metabolismus patologie MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- multiplexová polymerázová řetězová reakce MeSH
- pankreas metabolismus patologie MeSH
- sestřih RNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- hepatocytární jaderný faktor 1-beta MeSH
- HNF1B protein, human MeSH Prohlížeč
- messenger RNA MeSH
The nonsense-mediated mRNA decay (NMD) pathway rapidly detects and degrades mRNA containing premature termination codons (PTCs). UP-frameshift 1 (UPF1), the master regulator of the NMD process, has two alternatively-spliced isoforms; one carries 353-GNEDLVIIWLR-363 insertion in the 'regulatory loop (involved in mRNA binding)'. Such insertion can induce catalytic and/or ATPase activity, as determined experimentally; however, the kinetics and molecular level information are not fully understood. Herein, applying all-atom molecular dynamics, we probe the binding specificity of UPF1 with different GC- and AU-rich mRNA motifs and the influence of insertion to the viable control over UPF1 catalytic activity. Our results indicate two distinct conformations between 1B and RecA2 domains of UPF1: 'open (isoform_2; without insertion)' and 'closed (isoform_1; with insertion)'. These structural movements correspond to an important stacking pattern in mRNA motifs, i.e., absence of stack formation in mRNA, with UPF1 isoform_2 results in the 'open conformation'. Particularly, for UPF1 isoform_1, the increased distance between 1B and RecA2 domains has resulted in reducing the mRNA-UPF1 interactions. Lower fluctuating GC-rich mRNA motifs have better binding with UPF1, compared with AU-rich sequences. Except CCUGGGG, all other GC-rich motifs formed a 4-stack pattern with UPF1. High occupancy R363, D364, T627, and G862 residues were common binding GC-rich motifs, as were R363, N535, and T627 for the AU-rich motifs. The GC-rich motifs behave distinctly when bound to either of the isoforms; lower stability was observed with UPF1 isoform_2. The cancer-associated UPF1 variants (P533L/T and A839T) resulted in decreased protein-mRNA binding efficiency. Lack of mRNA stacking poses in the UPF1P533T system significantly decreased UPF1-mRNA binding efficiency and increased distance between 1B-RecA2. These novel findings can serve to further inform NMD-associated mechanistic and kinetic studies.
- Klíčová slova
- AU-rich, GC-rich, NMD, PTC, UPF1, alternatively spliced, degradation, isoform, mRNA, molecular dynamics, motifs, regulatory loop, stability,
- MeSH
- alternativní sestřih * MeSH
- fosforylace MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- nonsense mediated mRNA decay * MeSH
- protein - isoformy MeSH
- regulace genové exprese * MeSH
- RNA-helikasy genetika metabolismus MeSH
- trans-aktivátory genetika metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- messenger RNA MeSH
- protein - isoformy MeSH
- RNA-helikasy MeSH
- trans-aktivátory MeSH
- UPF1 protein, human MeSH Prohlížeč
Germline CHEK2 pathogenic variants confer an increased risk of female breast cancer (FBC). Here we describe a recurrent germline intronic variant c.1009-118_1009-87delinsC, which showed a splice acceptor shift in RNA analysis, introducing a premature stop codon (p.Tyr337PhefsTer37). The variant was found in 21/10,204 (0.21%) Czech FBC patients compared to 1/3250 (0.03%) controls (p = 0.04) and in 4/3639 (0.11%) FBC patients from an independent German dataset. In addition, we found this variant in 5/2966 (0.17%) Czech (but none of the 443 German) ovarian cancer patients, three of whom developed early-onset tumors. Based on these observations, we classified this variant as likely pathogenic.
- Klíčová slova
- Breast cancer, Deep intronic CHEK2 variant, Genetic testing, NGS, RNA analysis,
- MeSH
- checkpoint kinasa 2 * genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci * genetika MeSH
- introny * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory prsu * genetika MeSH
- nádory vaječníků genetika MeSH
- prekurzory RNA genetika MeSH
- sestřih RNA * genetika MeSH
- zárodečné mutace * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH
- Názvy látek
- CHEK2 protein, human MeSH Prohlížeč
Mutations in the C1 inhibitor (C1INH) encoding gene, SERPING1, are associated with hereditary angioedema (HAE) which manifests as recurrent submucosal and subcutaneous edema episodes. The major C1INH function is the complement system inhibition, preventing its spontaneous activation. The presented study is focused on SERPING1 exon 3, an alternative and extraordinarily long exon (499 bp). Endogenous expression analysis performed in the HepG2, human liver, and human peripheral blood cells revealed several exon 3 splicing variants alongside exon inclusion: a highly prevalent exon skipping variant and less frequent +38 and -15 variants with alternative 3' splice sites (ss) located 38 and 15 nucleotides downstream and upstream from the authentic 3' ss, respectively. An exon skipping variant introducing a premature stop codon, represented nearly one third of all splicing variants and surprisingly appeared not to be degraded by NMD. The alternative -15 3' ss was used to a small extent, although predicted to be extremely weak. Its use was shown to be independent of its strength and highly sensitive to any changes in the surrounding sequence. -15 3' ss seems to be co-regulated with the authentic 3' ss, whose use is dependent mainly on its strength and less on the presence of intronic regulatory motifs. Subtle SERPING1 exon 3 splicing regulation can contribute to overall C1INH plasma levels and HAE pathogenesis.
- Klíčová slova
- Acceptor splice site, Alternative splicing, Exon 3, Hereditary angioedema, SERPING1,
- MeSH
- alternativní sestřih genetika MeSH
- buněčné jádro genetika MeSH
- buňky Hep G2 MeSH
- exony genetika MeSH
- inhibiční protein komplementu C1 genetika MeSH
- lidé MeSH
- malá interferující RNA metabolismus MeSH
- místa sestřihu RNA genetika MeSH
- mutace genetika MeSH
- nonsense mediated mRNA decay genetika MeSH
- sekvence nukleotidů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inhibiční protein komplementu C1 MeSH
- malá interferující RNA MeSH
- místa sestřihu RNA MeSH
- SERPING1 protein, human MeSH Prohlížeč
Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.
- Klíčová slova
- ACMG/AMP classification, BRCA2, dPCR, functional analysis, quantitation, splicing,
- MeSH
- alternativní sestřih MeSH
- geny BRCA2 * MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- místa sestřihu RNA * MeSH
- myši MeSH
- protein BRCA2 genetika metabolismus MeSH
- sestřih RNA MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BRCA2 protein, human MeSH Prohlížeč
- messenger RNA MeSH
- místa sestřihu RNA * MeSH
- protein BRCA2 MeSH
For more than three decades, researchers have known that consensus splice sites alone are not sufficient regulatory elements to provide complex splicing regulation. Other regulators, so-called splicing regulatory elements (SREs) are needed. Most importantly, their sequence variants often underlie the development of various human disorders. However, due to their variable location and high degeneracy, these regulatory sequences are also very difficult to recognize and predict. Many different approaches aiming to identify SREs have been tried, often leading to the development of in silico prediction tools. While these tools were initially expected to be helpful to identify splicing-affecting mutations in genetic diagnostics, we are still quite far from meeting this goal. In fact, most of these tools are not able to accurately discern the SRE-affecting pathological variants from those not affecting splicing. Nonetheless, several recent evaluations have given appealing results (namely for EX-SKIP, ESRseq and Hexplorer predictors). In this review, we aim to summarize the history of the different approaches to SRE prediction, and provide additional validation of these tools based on patients' clinical data. Finally, we evaluate their usefulness for diagnostic settings and discuss the challenges that have yet to be met.
- Klíčová slova
- evaluation of prediction tools, in silico predictions, mutation, pre-mRNA splicing, splicing aberration, splicing regulatory elements, variants of unknown significance,
- MeSH
- diagnostické techniky molekulární metody trendy MeSH
- genetické nemoci vrozené * MeSH
- lidé MeSH
- místa sestřihu RNA * MeSH
- mutace * MeSH
- prekurzory RNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- místa sestřihu RNA * MeSH
- prekurzory RNA MeSH
Acceptor splice site recognition (3' splice site: 3'ss) is a fundamental step in precursor messenger RNA (pre-mRNA) splicing. Generally, the U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF) heterodimer recognizes the 3'ss, of which U2AF35 has a dual function: (i) It binds to the intron-exon border of some 3'ss and (ii) mediates enhancer-binding splicing activators' interactions with the spliceosome. Alternative mechanisms for 3'ss recognition have been suggested, yet they are still not thoroughly understood. Here, we analyzed 3'ss recognition where the intron-exon border is bound by a ubiquitous splicing regulator SRSF1. Using the minigene analysis of two model exons and their mutants, BRCA2 exon 12 and VARS2 exon 17, we showed that the exon inclusion correlated much better with the predicted SRSF1 affinity than 3'ss quality, which were assessed using the Catalog of Inferred Sequence Binding Preferences of RNA binding proteins (CISBP-RNA) database and maximum entropy algorithm (MaxEnt) predictor and the U2AF35 consensus matrix, respectively. RNA affinity purification proved SRSF1 binding to the model 3'ss. On the other hand, knockdown experiments revealed that U2AF35 also plays a role in these exons' inclusion. Most probably, both factors stochastically bind the 3'ss, supporting exon recognition, more apparently in VARS2 exon 17. Identifying splicing activators as 3'ss recognition factors is crucial for both a basic understanding of splicing regulation and human genetic diagnostics when assessing variants' effects on splicing.
- Klíčová slova
- SRSF1, U2AF35, acceptor splice site recognition, pre-mRNA splicing, splicing enhancer,
- MeSH
- alternativní sestřih genetika MeSH
- exony genetika MeSH
- HeLa buňky MeSH
- introny genetika MeSH
- lidé MeSH
- místa sestřihu RNA genetika fyziologie MeSH
- proteiny vázající RNA metabolismus MeSH
- regulační oblasti nukleových kyselin genetika MeSH
- sekvence nukleotidů genetika MeSH
- serin-arginin sestřihové faktory metabolismus MeSH
- sestřih RNA fyziologie MeSH
- sestřihové faktory metabolismus fyziologie MeSH
- sestřihový faktor U2AF metabolismus MeSH
- spliceozomy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- místa sestřihu RNA MeSH
- proteiny vázající RNA MeSH
- serin-arginin sestřihové faktory MeSH
- sestřihové faktory MeSH
- sestřihový faktor U2AF MeSH
- SRSF1 protein, human MeSH Prohlížeč
- U2AF1 protein, human MeSH Prohlížeč
Ubiquitin-like 5 (UBL5), which is supposed to be involved in regulation of feed intake, energy metabolism, obesity and type 2 diabetes, is located at position 62.1 cM on the pig chromosome 2 region harbouring quantitative trait loci for carcass and meat quality. The 4,354 bp genomic sequence (FR798948) of the porcine gene encompassing the promoter and entire gene was cloned by polymerase chain reaction. Comparative sequencing revealed 13 polymorphisms in noncoding regions. Synthesis of full-length cDNA sequences using rapid amplification of 5' and 3' ends showed three splice variants. Variants 1 and 2 differ in transcription length for the untranslated part of exon 1 with deduced protein of 73 amino acid (aa) residues and 100 % identities between human, mouse and other species. Variant 3, with 4 bp deletion at the 3' end of exon 2, encodes a truncated protein with 28 aa residues. In a Wild boar×Meishan F2 population (n = 334) with 47 recorded traits, loci FR798948:g.2788G>A and FR798948:g.2141T>C were associated at nominal P < 0.05 with fat deposition, growth and fattening and muscling but after adjustment for multiple testing (Benjamini and Hochberg, J R Stat Soc B 57:289-300, 1995) only eight fat deposition traits showed suggestive association with FR798948:g.2788G>A at adjusted P < 0.10. In a Meishan×Large White (MLW) cross (n = 562) with six trait records available, FR798948:g.2141T>C showed suggestive association with growth (adjusted P = 0.0690). As association mapping conducted in the outbred MLW population is more precise than in the three generation F2 population the UBL5 gene tends to be associated with growth rather than with fat accretion.
- MeSH
- genetické asociační studie * MeSH
- genom * MeSH
- klonování DNA MeSH
- messenger RNA * MeSH
- polymorfismus genetický * MeSH
- pořadí genů MeSH
- prasata genetika MeSH
- promotorové oblasti (genetika) MeSH
- sestřih RNA * MeSH
- ubikvitiny genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA * MeSH
- ubikvitiny MeSH