refractive index structure parameter
Dotaz
Zobrazit nápovědu
Light transport through a multimode optical waveguide undergoes changes when subjected to bending deformations. We show that optical waveguides with a perfectly parabolic refractive index profile are almost immune to bending, conserving the structure of propagation-invariant modes. Moreover, we show that changes to the transmission matrix of parabolic-index fibers due to bending can be expressed with only two free parameters, regardless of how complex a particular deformation is. We provide detailed analysis of experimentally measured transmission matrices of a commercially available graded-index fiber as well as a gradient-index rod lens featuring a very faithful parabolic refractive index profile. Although parabolic-index fibers with a sufficiently precise refractive index profile are not within our reach, we show that imaging performance with standard commercially available graded-index fibers is significantly less influenced by bending deformations than step-index types under the same conditions. Our work thus predicts that the availability of ultraprecise parabolic-index fibers will make endoscopic applications with flexible probes feasible and free from extremely elaborate computational challenges.
- Publikační typ
- časopisecké články MeSH
Optical camera communications (OCC) research field has grown recently, aided by ubiquitous digital cameras; however, atmospheric conditions can restrict their feasibility in outdoor scenarios. In this work, we studied an experimental OCC system under environmental phenomena emulated in a laboratory chamber. We found that the heat-induced turbulence does not affect our system significantly, while the attenuation caused by fog does decrease the signal quality. For this reason, a novel strategy is proposed, using the camera's built-in amplifier to overcome the optical power loss and to decrease the quantization noise induced by the analog-digital converter of the camera. The signal quality has been evaluated using the Pearson's correlation coefficient with respect to a reference template signal, along with the signal-to-noise ratio that has been empirically evaluated. The amplification mechanism introduced allows our system to receive the OCC signal under heavy fog by gradually increasing the camera gain up to 16 dB, for meteorological visibility values down to 10 m, with a correlation coefficient of 0.9 with respect to clear conditions.
Spatial phase modulation in an imaging interferometer is utilized in surface plasmon resonance (SPR) based sensing of liquid analytes. In the interferometer, a collimated light beam from a laser diode irradiating at 637.1 nm is passing through a polarizer and is reflected from a plasmonic structure of SF10/Cr/Au attached to a prism in the Kretschmann configuration. The beam passes through a combination of a Wollaston prism, a polarizer and a lens, and forms an interference pattern on a CCD sensor of a color camera. Interference patterns obtained for different liquid analytes are acquired and transferred to the computer for data processing. The sensing concept is based on the detection of a refractive index change, which is transformed via the SPR phenomenon into an interference fringe phase shift. By calculating the phase shift for the plasmonic structure of SF10/Cr/Au of known parameters we demonstrate that this technique can detect different weight concentrations of ethanol diluted in water, or equivalently, different changes in the refractive index. The sensitivity to the refractive index and the detection limit obtained are -278 rad/refractive-index-unit (RIU) and 3.6 × 10 - 6 RIU, respectively. The technique is demonstrated in experiments with the same liquid analytes as in the theory. Applying an original approach in retrieving the fringe phase shift, we revealed good agreement between experiment and theory, and the measured sensitivity to the refractive index and the detection limit reached -226 rad/RIU and 4.4 × 10 - 6 RIU, respectively. These results suggest that the SPR interferometer with the detection of a fringe phase shift is particularly useful in applications that require measuring refractive index changes with high sensitivity.
- Klíčová slova
- Kretschmann configuration, aqueous solutions of ethanol, fringe phase shift, imaging interferometer, sensitivity, spatial phase modulation, surface plasmon resonance,
- Publikační typ
- časopisecké články MeSH
Silver nanorod arrays prepared by oblique angle deposition (AgOADs) represent versatile, simple and inexpensive substrates for high sensitivity surface enhanced Raman scattering (SERS) applications. Their anisotropic nature suggests that their optical responses such as the SERS signal, the depolarization ratio, reflectivity and ellipsometric parameters critically depend on the states of polarization, nanorod angular arrangement and specific illumination-observation geometry. SERS polarization and angular dependences of AgOADs were measured using methylene blue (MB) molecule. Our study constitutes, to our knowledge, the most detailed investigation of such characteristics of plasmonic nanostructures to date. This is due to the 90°-scattering geometry used in which two out of three Euler angles determining the nanorod spatial orientation and four polarization combinations can be varied simultaneously. We attributed the anisotropic optical response to anisotropic (pseudo)refractive index caused by different periodicity of our structures in different directions since the plasmonic properties were found rather isotropic. For the first time we demonstrate very good correspondence between SERS intensities and ellipsometric parameters for all measured configurations as compared on the basis of the surface selection rules. Obtained results enable quantitative analysis of MB Raman tensor elements, indicating that the molecules adsorb predominantly with the symmetry axis perpendicular to the surface.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Despite the renewed interest in rare earth-doped chalcogenide glasses lying mainly in mid-infrared applications, a few comprehensive studies so far have presented the photoluminescence of amorphous chalcogenide films from visible to mid-infrared. This work reports the fabrication of luminescent quaternary sulfide thin films using radio-frequency sputtering and pulsed laser deposition, and the characterization of their chemical composition, morphology, structure, refractive index and Er3+ photoluminescence. The study of Er3+ 4I13/2 level lifetimes enables developing suitable deposition parameters; the dependency of composition, structural and spectroscopic properties on deposition parameters provides a way to tailor the RE-doped thin film properties. The surface roughness is very low for both deposition methods, ensuring reasonable propagation optical losses. The effects of annealing on the sulfide films spectroscopy and lifetimes were assessed. PLD appears consistent composition-wise, and largely independent of the deposition conditions, but radiofrequency magnetron sputtering seems to be more versatile, as one may tailor the film properties through deposition parameters manipulation. The luminescence via rare earth-doped chalcogenide waveguiding micro-structures might find easy-to-use applications concerning telecommunications or on-chip optical sensors for which luminescent sources or amplifiers operating at different wavelengths are required.
- Publikační typ
- časopisecké články MeSH
In this paper, we propose an innovative approach based on the wavelength optimization of a light source for a simple, high-performance surface plasmon resonance (SPR) sensor utilizing comprehensive reflectance analysis in the angular domain. The proposed structure consists of a glass substrate, an adhesion layer of titanium dioxide, a silver plasmonic layer, and a 2D material. Analysis is performed in the Kretschmann configuration for liquid analyte sensing. Sensing parameters such as the refractive index (RI) sensitivity, the reflectance minimum, and the figure of merit (FOM) are investigated in the first step of this study as a function of the thickness of the silver layer together with the RI of a coupling prism. Next, utilizing the results offering a fused silica prism, the thickness of the silver layer and the wavelength of the light source are optimized for the structure with the addition of a 2D material, black phosphorus (BP), which is studied along different principal directions, the zigzag and armchair directions. In addition, a new approach of adjusting the source wavelength using a one-dimensional photonic crystal combined with an LED, is presented. Based on this analysis, for the reference structure at a wavelength of 632.8 nm, the optimized silver layer thickness is 50 nm, and the achieved RI sensitivity ranges from 193.9 to 251.5 degrees per RI unit (deg/RIU), with the highest FOM reaching 52.3 RIU-1. In addition, for the modified structure with BP, the achieved RI sensitivity varies in the range of 269.1-351.2 deg/RIU at the optimized wavelength of 628 nm, with the highest FOM reaching 44.7 RIU-1 for the zigzag direction. Due to the optimization and adjusting the wavelength of the source, the results obtained for the proposed SPR structure could have significant implications for the development of more sensitive and efficient sensors employing a simple plasmonic structure.
- Klíčová slova
- SPR, angular domain, black phosphorus, sensitivity enhancement, silver layer, zigzag and armchair directions,
- Publikační typ
- časopisecké články MeSH
The development of the optical bio-chemical sensing technology is an extremely important scientific and technological issue for diagnosis and monitoring of diseases, control of industrial processes, environmental detection of air and water pollutants. Owing to their distinctive features, chalcogenide amorphous thin films represent a keystone in the manufacture of middle infrared integrated optical devices for a sensitive detection of biological or environmental variations. Since the chalcogenide thin films characteristics, i.e. stoichiometric conformity, structure, roughness or optical properties can be affected by the growth process, the choice and control of the deposition method is crucial. An approach based on the experimental design is undoubtedly a way to be explored allowing fast optimization of chalcogenide film deposition by means of radio frequency sputtering process. Argon (Ar) pressure, working power and deposition time were selected as potentially the most influential factors among all possible. The experimental design analysis confirms the great influence of the Ar pressure on studied responses: chemical composition, refractive index in near-IR (1.55 µm) and middle infrared (6.3 and 7.7 µm), band-gap energy, deposition rate and surface roughness. Depending on the intended application and therefore desired thin film characteristics, mappings of the experimental design meaningfully help to select suitable deposition parameters.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Determination of molecular weight parameters of native and, in particular, technical lignins are based on size exclusion chromatography (SEC) approaches. However, no matter which approach is used, either conventional SEC with a refractive index detector and calibration with standards or multi-angle light scattering (MALS) detection at 488 nm, 633 nm, 658 nm, or 690 nm, all variants can be severely erroneous. The lack of calibration standards with high structural similarity to lignin impairs the quality of the molar masses determined by conventional SEC, and the typical fluorescence of (technical) lignins renders the corresponding MALS data rather questionable. Application of MALS detection at 785 nm by using an infrared laser largely overcomes those problems and allows for a reliable and reproducible determination of the molar mass distributions of all types of lignins, which has been demonstrated in this study for various and structurally different analytes, such as kraft lignins, milled-wood lignin, lignosulfonates, and biorefinery lignins. The topics of calibration, lignin fluorescence, and lignin UV absorption in connection with MALS detection are critically discussed in detail, and a reliable protocol is presented. Correction factors based on MALS measurements have been determined for commercially available calibration standards, such as pullulan and polystyrene sulfonate, so that now more reliable mass data can be obtained also if no MALS system is available and these conventional calibration standards have to be resorted to.
- Klíčová slova
- infrared laser, kraft lignin, lignosulfonate, multi-angle light scattering, size exclusion chromatography,
- Publikační typ
- časopisecké články MeSH