sand flies
Dotaz
Zobrazit nápovědu
BACKGROUND: Species belonging to the subgenus Sauroleishmania are parasites of reptiles, and traditionally considered to be non-pathogenic to mammals. Knowledge of the development of these parasites in sand flies and their mechanism of transmission is currently lacking. The main aim of this study was to test the susceptibility of various sand fly species to infection by two Sauroleishmania species, focusing on the localization of parasites in the sand fly intestinal tract. METHODS: The development of Leishmania (Sauroleishmania [S.]) adleri and Leishmania (S.) hoogstraali was studied in six sand fly species (Phlebotomus orientalis, P. argentipes, P. sergenti, P. papatasi, P. duboscqi, Sergentomyia schwetzi). Sand flies were fed through a chick-skin membrane on blood containing Sauroleishmania promastigotes, and they were dissected at various time intervals post blood meal (PBM). Guts were examined microscopically for the presence of parasites, and the intensity and localizations of infections were recorded. Morphological forms of both Sauroleishmania species developing in P. orientalis were analyzed. Experimental infections of geckos using sand fly-derived promastigotes were also performed, and the reptiles were repeatedly examined for Sauroleishmania infection by xenodiagnosis and PCR analysis. RESULTS: High infection rates for both Sauroleishmania species were observed in P. orientalis and P. argentipes, with the parasites migrating anteriorly and undergoing a peripylarian type of development, including colonization of the stomodeal valve. Conversely, the development of L. (S.) adleri in P. sergenti, P. papatasi and Se. schwetzi was restricted to the sand fly hindgut (hypopylarian type of development). Five morphological forms were distinguished for both Sauroleishmania species developing in P. orientalis. All experimentally infected geckos scored negative for Sauroleishmania based on xenodiagnosis and molecular analysis. CONCLUSIONS: The results showed that Sauroleishmania promastigotes can undergo either a peripylarian or hypopylarian type of development in the sand fly intestinal tract, depending on the sand fly species infected. We demonstrated that P. argentipes and P. orientalis, two sand fly species known as permissive vectors for mammalian parasites of subgenus Leishmania, are also highly susceptible to Sauroleishmania as the parasites developed mature late-stage infections, including colonization of the sand fly stomodeal valve. Thus, the role of Phlebotomus sand flies in transmission of Sauroleishmania should be reconsidered and further investigated.
- Klíčová slova
- Geckos, Leishmaniasis, Phlebotomus, Sand flies, Sauroleishmania, Sergentomyia,
- MeSH
- ještěři * MeSH
- Leishmania * MeSH
- Phlebotomus * parazitologie MeSH
- Psychodidae * parazitologie MeSH
- savci MeSH
- xenodiagnóza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Sand flies (Diptera: Phlebotominae) are proven vectors of various pathogens of medical and veterinary importance. Although mostly known for their pivotal role in the transmission of parasitic protists of the genus Leishmania that cause leishmaniases, they are also proven or suspected vectors of many arboviruses, some of which threaten human and animal health, causing disorders such as human encephalitis (Chandipura virus) or serious diseases of domestic animals (vesicular stomatitis viruses). We reviewed the literature to summarize the current published information on viruses detected in or isolated from phlebotomine sand flies, excluding the family Phenuiviridae with the genus Phlebovirus, as these have been well investigated and up-to-date reviews are available. Sand fly-borne viruses from four other families (Rhabdoviridae, Flaviviridae, Reoviridae and Peribunyaviridae) and one unclassified group (Negevirus) are reviewed for the first time regarding their distribution in nature, host and vector specificity, and potential natural transmission cycles.
- Klíčová slova
- Arurhavirus, Curiovirus, Flavivirus, Orbivirus, Orthobunyavirus, Pacuvirus, Sripuvirus, Vesiculovirus, arbovirus, sand fly, sand fly-borne virus,
- MeSH
- arboviry * MeSH
- hospodářská zvířata MeSH
- lidé MeSH
- Phlebovirus * MeSH
- Psychodidae * MeSH
- Rhabdoviridae * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: Sand flies (Diptera: Psychodidae) are medically important vectors of human and veterinary disease-causing agents. Among these, the genus Leishmania (Kinetoplastida: Trypanosomatidae), and phleboviruses are of utmost importance. Despite such significance, updated information about sand fly fauna is missing for Balkan countries where both sand flies and autochtonous leishmaniases are historically present and recently re-emerging. Therefore, a review of historical data on sand fly species composition and distribution in the region was followed by a large-scale entomological survey in eight Balkan countries to provide a recent update on local sand fly fauna. METHODS: The literature search involved the period 1910-2019. The entomological survey was conducted at 1189 sampling stations in eight countries (Bulgaria, Bosnia and Herzegovina, Croatia, Kosovo, Montenegro, North Macedonia, Serbia and Slovenia), covering 49 settlements and 358 sampling sites between June and October in the years 2014 and 2016, accumulating 130 sampling days. We performed a total of 1189 trapping nights at these stations using two types of traps (light and CO2 attraction traps) in each location. Sampling was performed with a minimal duration of 6 (Montenegro) and a maximal of 47 days (Serbia) between 0-1000 m.a.s.l. Collected sand flies were morphologically identified. RESULTS: In total, 8490 sand fly specimens were collected. Morphological identification showed presence of 14 species belonging to genera Phlebotomus and Sergentomyia. Historical data were critically reviewed and updated with our recent findings. Six species were identified in Bosnia and Herzegovina (2 new records), 5 in Montenegro (2 new records), 5 in Croatia (2 new records), 9 in Bulgaria (5 new records), 11 in North Macedonia (1 new record), 10 in Serbia (no new records), 9 in Kosovo (3 new records) and 4 in Slovenia (no new records). CONCLUSIONS: This study presents results of the first integrated sand fly fauna survey of such scale for the Balkan region, providing first data on sand fly populations for four countries in the study area and presenting new species records for six countries and updated species lists for all surveyed countries. Our findings demonstrate presence of proven and suspected vectors of several Leishmania species.
- Klíčová slova
- Balkans, Morphology, Phlebotomine, Sand fly, Species,
- MeSH
- hmyz - vektory klasifikace parazitologie MeSH
- leishmanióza přenos MeSH
- Psychodidae klasifikace parazitologie MeSH
- rozšíření zvířat * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Balkánský poloostrov MeSH
The aim of the study was to evaluate the potential of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) for the species identification of sand flies at different developmental stages and map changes in their protein profiles during the course of whole life cycle. Specimens of six different species from laboratory colonies at larval and pupal stages were examined using MALDI-TOF MS. The protein profiles of larvae were stable from the L2 to L4 developmental stages and clearly distinguishable at the species level. In a validation study, 123 larvae of the six species were queried against reference database resulting in 93% correct species identification (log score values higher than 2.0). The spectra generated from sand fly pupae allow species identification as well and surprisingly, in contrast to biting midges and mosquitoes, they did not change during this developmental stage. For adults, thorax was revealed as the optimal body part for sample preparation yielding reproducible spectra regardless age and diet. Only variations were uncovered for freshly engorged females profiles of which were affected by blood signals first two days post bloodmeal. The findings demonstrate that in addition to adult species differentiation MALDI-TOF MS may also serve as a rapid and effective tool for species identification of juvenile stages of phlebotomine sand flies.
- Klíčová slova
- Blood influence, Identification, Larvae, MALDI-TOF mass spectrometry, Phlebotomine sand flies, Pupae,
- MeSH
- druhová specificita MeSH
- kukla klasifikace růst a vývoj MeSH
- larva klasifikace růst a vývoj MeSH
- Psychodidae klasifikace růst a vývoj MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Parasites of the genus Porcisia, together with the genus Endotrypanum, form a sister clade to the species-rich and medically important genus Leishmania. Both Porcisia species, P. hertigi and P. deanei, are dixenous parasites of Neotropical porcupines. Almost 50 years after their first discovery, knowledge of their life cycle remains poor and their insect vectors are unknown. Because competent vectors of their closest phylogenetic relatives, genera Endotrypanum and Leishmania, are phlebotomine sand flies (Diptera: Psychodidae) and/or biting midges (Diptera: Ceratopogonidae), we examined here the potential of both sand flies and biting midges to transmit Porcisia parasites. The insects (Lutzomyia longipalpis, L. migonei and Culicoides sonorensis) were exposed to parasites through the chicken skin membrane and dissected at various time intervals post bloodmeal. Potentially infected females were also allowed to feed on the ears of anaesthetized BALB/c mice and the presence of parasite DNA was subsequently confirmed in the mice by PCR. Porcisia hertigi did not survive defecation in L. longipalpis or L. migonei, suggesting that these sand fly species are unlikely to serve as natural vectors of this parasite. Similarly, P. hertigi infections were lost in Culicoides midges. In contrast, mature P. deanei infections developed in 51-61% of L. longipalpis females, 7.3% of L. migonei females and 7.7% of Culicoides sonorensis females. In all three vector species, P. deanei colonized predominantly Malpighian tubules and produced metacyclic infective forms. Transmission of P. daenei to BALB/c mice was demonstrated via the prediuresis of L. longipalpis females. This mode of transmission, as well the colonization of Malpighian tubules as the dominant tissue of the vector, is unique among trypanosomatids. In conclusion, we demonstrated the vector competence of L. longipalpis for P. deanei but not for P. hertigi, and further studies are needed to evaluate competence of other Neotropical vectors for these neglected parasites.
- Klíčová slova
- Culicoides, Lutzomyia, Malpighian tubules, Porcisia deanei, Porcisia hertigi, contaminative transmission, prediuresis,
- MeSH
- fylogeneze MeSH
- hmyz - vektory MeSH
- Leishmania * MeSH
- myši MeSH
- Psychodidae * MeSH
- stadia vývoje MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Leishmaniases are parasitic diseases present worldwide that are transmitted to the vertebrate host by the bite of an infected sand fly during a blood feeding. Phlebotomine sand flies inoculate into the mammalian host Leishmania parasites embedded in promastigote secretory gel (PSG) with saliva, which is composed of a diverse group of molecules with pharmacological and immunomodulatory properties. METHODS AND FINDINGS: In this review, we focus on 3 main aspects of sand fly salivary molecules: (1) structure and composition of salivary glands, including the properties of salivary molecules related to hemostasis and blood feeding, (2) immunomodulatory properties of salivary molecules and the diverse impacts of these molecules on leishmaniasis, ranging from disease exacerbation to vaccine development, and (3) use of salivary molecules for field applications, including monitoring host exposure to sand flies and the risk of Leishmania transmission. Studies showed interesting differences between salivary proteins of Phlebotomus and Lutzomyia species, however, no data were ever published on salivary proteins of Sergentomyia species. CONCLUSIONS: In the last 15 years, numerous studies have characterized sand fly salivary proteins and, in parallel, have addressed the impact of such molecules on the biology of the host-sand fly-parasite interaction. The results obtained shall pave the way for the development of field-application tools that could contribute to the management of leishmaniasis in endemic areas.
- MeSH
- Leishmania imunologie MeSH
- Psychodidae parazitologie fyziologie MeSH
- slinné proteiny a peptidy imunologie metabolismus MeSH
- sliny imunologie parazitologie MeSH
- stravovací zvyklosti * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- slinné proteiny a peptidy MeSH
We investigated gene expression patterns in Lutzomyia and Phlebotomus sand fly vectors of leishmaniases. Using quantitative PCR, we assessed the expression stability of potential endogenous control genes commonly used in dipterans. We analyzed Lutzomyia longipalpis and Phlebotomus papatasi samples from L3 and L4 larval stages, adult sand flies of different sexes, diets, dsRNA injection, and Leishmania infection. Six genes were evaluated: actin, α-tubulin, GAPDH, 60 S ribosomal proteins L8 and L32 (RiboL8 and RiboL32), and elongation factor 1-α (EF1-α). EF1-α was among the most stably expressed along with RiboL8 in L. longipalpis larvae and RiboL32 in adults. In P. papatasi, EF1-α and RiboL32 were the top in larvae, while EF1-α and actin were the most stable in adults. RiboL8 and actin were the most stable genes in dissected tissues and infected guts. Additionally, five primer pairs designed for L. longipalpis or P. papatasi were effective in PCR with Lutzomyia migonei, Phlebotomus duboscqi, Phlebotomus perniciosus, and Sergentomyia schwetzi cDNA. Furthermore, L. longipalpis RiboL32 and P. papatasi α-tubulin primers were suitable for qPCR with cDNA from the other four species. Our research provides tools to enhance relative gene expression studies in sand flies, facilitating the selection of endogenous control for qPCR.
- Klíčová slova
- Lutzomyia, Phlebotomus, Endogenous control gene, Gene expression, Gene stability, Reference gene,
- MeSH
- esenciální geny * MeSH
- hmyz - vektory genetika MeSH
- hmyzí geny MeSH
- larva genetika MeSH
- Leishmania genetika MeSH
- Phlebotomus * genetika MeSH
- Psychodidae genetika MeSH
- stanovení celkové genové exprese metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Leishmaniases are vector-borne parasitic diseases with 0.9 - 1.4 million new human cases each year worldwide. In the vectorial part of the life-cycle, Leishmania development is confined to the digestive tract. During the first few days after blood feeding, natural barriers to Leishmania development include secreted proteolytic enzymes, the peritrophic matrix surrounding the ingested blood meal and sand fly immune reactions. As the blood digestion proceeds, parasites need to bind to the midgut epithelium to avoid being excreted with the blood remnant. This binding is strictly stage-dependent as it is a property of nectomonad and leptomonad forms only. While the attachment in specific vectors (P. papatasi, P. duboscqi and P. sergenti) involves lipophosphoglycan (LPG), this Leishmania molecule is not required for parasite attachment in other sand fly species experimentally permissive for various Leishmania. During late-stage infections, large numbers of parasites accumulate in the anterior midgut and produce filamentous proteophosphoglycan creating a gel-like plug physically obstructing the gut. The parasites attached to the stomodeal valve cause damage to the chitin lining and epithelial cells of the valve, interfering with its function and facilitating reflux of parasites from the midgut. Transformation to metacyclic stages highly infective for the vertebrate host is the other prerequisite for effective transmission. Here, we review the current state of knowledge of molecular interactions occurring in all these distinct phases of parasite colonization of the sand fly gut, highlighting recent discoveries in the field.
- MeSH
- gastrointestinální trakt parazitologie MeSH
- hmyz - vektory MeSH
- Leishmania fyziologie MeSH
- Psychodidae parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: Phlebotomine sand flies (Diptera: Psychodidae) are haematophagous insects that transmit the protozoan parasite Leishmania infantum (Kinetoplastida: Trypanosomatidae), the main causative agent of both zoonotic visceral leishmaniasis (VL) and canine leishmaniasis (CanL) in the Mediterranean basin. Eight species of sand flies have been previously recorded in Romania: Phlebotomus papatasi, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus perfiliewi, Phlebotomus neglectus, Phlebotomus longiductus, Phlebotomus balcanicus and Sergentomyia minuta. Three of them (P. perfiliewi, P. neglectus and P. balcanicus) were incriminated as vectors of L. infantum. Recent reports of autochthonous CanL in Romania require updates on sand fly distribution and diversity in this country. METHODS: Between 2013-2014 and 2016-2018, CDC light traps and mouth aspirators were used to collect sand flies in 132 locations from Romania, indoors and around various animal species shelters. Species identification of collected specimens was done using morphological keys, genetic tools and MALDI-TOF protein profiling. RESULTS: Sand flies were present in seven localities (5.3%): Eibenthal, Baia Nouă, Gura Văii (south-western Romania, Mehedinţi County); Fundătura, Pâhneşti, Epureni (eastern Romania, Vaslui County); and Schitu (southern Romania, Giurgiu County). Of the total number of collected sand flies (n = 251), 209 (83.27%) were Phlebotomus neglectus, 39 (15.53%) P. perfiliewi, 1 (0.40%) P. papatasi, 1 (0.40%) P. balcanicus and 1 (0.40%) P. sergenti (sensu lato). CONCLUSIONS: We confirmed the presence of five sand fly species previously recorded in Romania. However, their updated distribution differs from historical data. The diversity of sand fly species in Romania and their presence in areas with Mediterranean climatic influences constitutes a threat for the reemergence of vector-borne diseases. In the context of CanL and VL reemergence in Romania, but also due to imported cases of the diseases in both humans and dogs, updates on vector distribution are imperative.
- Klíčová slova
- Canine leishmaniasis, Distribution, Diversity, Romania, Sand flies,
- MeSH
- genetická variace * MeSH
- hmyz - vektory genetika fyziologie MeSH
- Phlebotomus genetika fyziologie MeSH
- rozšíření zvířat * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Rumunsko MeSH
Leishmaniases are serious parasitic diseases the etiological organisms of which are transmitted by insect vectors, phlebotominae sand flies. Two sand fly species, Phlebotomus papatasi and P. sergenti, display remarkable specificity for Leishmania parasites they transmit in nature, but many others are broadly permissive to the development of different Leishmania species. Previous studies have suggested that in 'specific' vectors the successful parasite development is mediated by parasite surface glycoconjugates and sand fly lectins, however we show here that interactions involving 'permissive' sand flies utilize another molecules. We did find that the abundant surface glycoconjugate lipophosphoglycan, essential for attachment of Leishmania major in the specific vector P. papatasi, was not required for parasite adherence or survival in the permissive vectors P. arabicus and Lutzomyia longipalpis. Attachment in several permissive sand fly species instead correlated with the presence of midgut glycoproteins bearing terminal N-acetyl-galactosamine and with the occurrence of a lectin-like activity on Leishmania surface. This new binding modality has important implications for parasite transmission and evolution. It may contribute to the successful spreading of Leishmania due to their adaptation into new vectors, namely transmission of L. infantum by Lutzomyia longipalpis; this event led to the establishment of L. infantum/chagasi in Latin America.
- MeSH
- acetylgalaktosamin metabolismus MeSH
- glykoproteiny chemie metabolismus MeSH
- glykosfingolipidy metabolismus MeSH
- hmyz - vektory MeSH
- Leishmania infantum fyziologie MeSH
- Leishmania klasifikace růst a vývoj MeSH
- Phlebotomus klasifikace parazitologie MeSH
- Psychodidae klasifikace parazitologie MeSH
- trávicí systém parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- acetylgalaktosamin MeSH
- glykoproteiny MeSH
- glykosfingolipidy MeSH
- lipophosphonoglycan MeSH Prohlížeč